
Randomized Data Structures

Amalia Duch and Conrado Martínez

Univ. Politècnica de Catalunya, Spain

LATIN 2022
November 7–11, 2022
Guanajuato, Mexico

1 Introduction

2 Skip lists

3 Randomized binary search trees

4 Randomized multidimensional data structures

5 Bloom filters

6 Universal hashing

Introduction

R. Karp N. C. Metropolis M. O. Rabin

The usefulnees of randomization in the design of algorithms
has been known for a long time:

Metropolis’ algorithms
Rabin’s primality test
Rabin-Karp’s string search

Introduction

Hashing is another early success of randomization for the
design of data structures.
For example, selecting the hash function from a universal
class (Carter and Wegman, 1977) guarantees expected
performance
Worst-case analysis of hashing is trivial and useless in
practice, we need to carry out a detailed probabilistic
analysis of the performance
The probabilistic analysis of various hash tables assumes
that the probability that HASH(x) = j is 1/M for all possible
keys x and all possible hash values j ∈ [0..M − 1], where
M is the number of memory slots in the hash table

Introduction

Randomization yields algorithms:
Simple and elegant
Practical
With guaranteed expected performance
Without assumptions on the probabilistic distribution of the
input

Introduction

The usual worst-case analysis is not useful for randomized
algorithms
The probabilistic model to use in the analysis is under
control; it is not a working hypothesis, but built-in

Introduction

Two types of algorithms:
Las Vegas: Answers are always correct, only probabilistic

guarantees on their performance (e.g., running
time)

Montecarlo: Answers might be wrong with probability
≤ ε < 1/2; using amplification we can make the
probability as small as needed

One-sided error: there are only false positives
or only false negatives
Two-sided error: false positives and false
negatives are possible

Introduction

Randomization for the design of data structures renders
usually “Las Vegas” algorithms to search and/or update the
data structures, e.g., skip lists, randomized binary search
trees, universal hashing
But there are also “Montecarlo” data structures, e.g.,
Bloom filters, which might give wrong answers (with small
probability)

Introduction

In this course:
Skip lists
Randomized binary search trees
Randomized multidimensional data structures
Bloom filters
Universal hashing (if time permits)

1 Introduction

2 Skip lists

3 Randomized binary search trees

4 Randomized multidimensional data structures

5 Bloom filters

6 Universal hashing

Skip lists

W. Pugh

Skip lists were invented by William Pugh (C. ACM, 1990)
as a simple alternative to balanced trees
The algorithms to search, insert, delete, etc. are very
simple to understand and to implement, and they have
very good expected performance—independent of any
assumption on the input

Skip lists

W. Pugh

Skip lists were invented by William Pugh (C. ACM, 1990)
as a simple alternative to balanced trees
The algorithms to search, insert, delete, etc. are very
simple to understand and to implement, and they have
very good expected performance—independent of any
assumption on the input

Skip lists

A skip list S for a set X consists of:
1 A sorted linked list L1, called level 1, contains all elements

of X
2 A collection of non-empty sorted lists L2, L3, . . . , called

level 2, level 3, . . . such that for all i ≥ 1, if an element x
belongs to Li then x belongs to Li+1 with probability q, for
some 0 < q < 1, p := 1− q

Skip lists

12 4240 53 663721

Header

−OO

NIL

OO+

To implement this, we store the items of X in a collection of
nodes each holding an item and a variable-size array of
pointers to the item’s successor at each level; an additional
dummy node gives access to the first item of each level

Skip lists

12 4240 53 663721

Header

−OO

NIL

OO+

To implement this, we store the items of X in a collection of
nodes each holding an item and a variable-size array of
pointers to the item’s successor at each level; an additional
dummy node gives access to the first item of each level

Skip lists

The level or height of a node x , height(x), is the number of
lists it belongs to.
It is given by a geometric r.v. of parameter p:

Pr{height(x) = k} = pqk−1, q = 1− p

The height of the skip list S is the number of non-empty
lists,

height(S) = max
x∈S
{height(x)}

Skip lists

The level or height of a node x , height(x), is the number of
lists it belongs to.
It is given by a geometric r.v. of parameter p:

Pr{height(x) = k} = pqk−1, q = 1− p

The height of the skip list S is the number of non-empty
lists,

height(S) = max
x∈S
{height(x)}

Skip lists

The level or height of a node x , height(x), is the number of
lists it belongs to.
It is given by a geometric r.v. of parameter p:

Pr{height(x) = k} = pqk−1, q = 1− p

The height of the skip list S is the number of non-empty
lists,

height(S) = max
x∈S
{height(x)}

Searching in a skip list

Searching for an item x , 42 < x ≤ 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x , 42 < x ≤ 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x , 42 < x ≤ 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x , 42 < x ≤ 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x , 42 < x ≤ 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x , 42 < x ≤ 53

12 4240 53 663721

Header

−OO

NIL

OO+

Implementing skip lists

. Returns pointer to item with key k or null

. if not such item exists in the skip list S
procedure SEARCH(k , S)

p := S.header
` := S.height
while ` > 0 do

if p → next[`] = null ∨ k ≤ p → next[`]→ key then
` := `− 1

else
p := p → next[`]

if p → next[1] = null ∨ k 6= p → next[1]→ key then
. k is not present
return null

else . k is present, return pointer to the node
return p → next[1]

Insertion in a skip list

Inserting an item x = 48

12 4240 53 663721

Header

−OO

NIL

OO+

Insertion in a skip list

Inserting an item x = 48

12 4240 53 663721

Header

−OO

NIL

OO+

Geom(p)

48

Insertion in a skip list

Inserting an item x = 48

53 66

NIL

OO+12 42403721

Header

−OO

48

Insertion in a skip list

Inserting an item x = 48

53 66

NIL

OO+4812 42403721

Header

−OO

Implementing skip lists

To insert a new item we go through four phases:
1) Search the given key. The search loop is slightly

different from before, since we need to keep track
of the last node seen at each level before
descending from that level to the one immediately
below.

2) If the given key is already present we only update
the associated value and finish.

Implementing skip lists

. Inserts new item 〈k , v〉 or

. updates value if key k is present in the skip list S
procedure INSERT(k , v , S)

p := S.header; ` := S.height
create array pred of pointers of size S.height
for i := 1 to S.height do pred [i] := S.header
while ` > 0 do

if p → next[`] = null ∨ k ≤ p → next[`]→ key then
. p should be the predecessor of the new item
. at level `
pred [`] := p; ` := `− 1

else
p := p → next[`]. . .

Implementing skip lists

procedure INSERT(k , v , S)
. . .
while . . . do

. loop to locate whether k is present or not

. and to determine predecessors at each level
if p → next[1] = null ∨ k 6= p → next[1]→ key then

. k is not present

. Insert new item, see next slide
else

. k is present, update its value
p → next[1]→ value := v

Implementing skip lists

3) When k is not present, create a new node with key
k and value v , and assign a random level r to the
new node, using geometric distribution

4) Link the new node in the first r lists, adding empty
lists if r is larger than the maximum level of the
skip list

Implementing skip lists

. Insert new item

. RNG() generates a random number U(0,1)
h := 1;
while RNG() > p do h := h + 1
nn := new NODE(k , v ,h)
if h > S.height then

Resize S.header and pred with h − S.height
new pointers, all set to null and S.header, resp.
S.height := h

for i := 1 to h do
nn→ next[i] := pred [i]→ next[i]
pred [i]→ next[i] := nn

Other Operations

Deletions are also very easy to implement
Ordered raversal of the keys is trivially implemented
Skip lists can also support many other operations, e.g.,
merging, search and deletion by rank, finger search, . . .
They can also support concurrency and massive
parallelism without too much effort

Other Operations

Deletions are also very easy to implement
Ordered raversal of the keys is trivially implemented
Skip lists can also support many other operations, e.g.,
merging, search and deletion by rank, finger search, . . .
They can also support concurrency and massive
parallelism without too much effort

Other Operations

Deletions are also very easy to implement
Ordered raversal of the keys is trivially implemented
Skip lists can also support many other operations, e.g.,
merging, search and deletion by rank, finger search, . . .
They can also support concurrency and massive
parallelism without too much effort

Other Operations

Deletions are also very easy to implement
Ordered raversal of the keys is trivially implemented
Skip lists can also support many other operations, e.g.,
merging, search and deletion by rank, finger search, . . .
They can also support concurrency and massive
parallelism without too much effort

Performance of skip lists

A preliminary rough analysis considers the search path
backwards. Imagine we are at some node x and level i :

The height of x is > i and we come from level i + 1 since
the sought key k is smaller than the key of the successor
of x at level i + 1
The height of x is i and we come from x ’s predecessor at
level i since k is larger or equal to the key at x

Performance of skip lists

Figure from W. Pugh’s Skip Lists: A Probabilistic Alternative to Balanced
Trees (C. ACM, 1990)—the meaning of p is the opposite of what we have
used!

Performance of skip lists

The expected number C(k) of steps to “climb” k levels in an
infinite list

C(k) = p(1 + C(k)) + (1− p)(1 + C(k − 1))

= 1 + pC(k) + qC(k − 1) =
1
q

(1 + qC(k − 1))

=
1
q

+ C(k − 1) = k/q

since C(0) = 0.

Performance of skip lists

The analysis above is pessimistic since the list is not infinite
and we might “bump” into the header. Then all remaining
backward steps to climb up to a level k are vertical—no more
horizontal steps. Thus the expected number of steps to climb
up to level Ln is

≤ (Ln − 1)/q

Performance of skip lists
Ln = the largest level L for which

E[# of nodes with height ≥ L] ≤ 1/q

Probability that a node has height ≥ k is

Pr{height(x) ≥ k} =
∑
i≥k

pqi−1 = pqk−1
∑
i≥0

qi = qk−1

Number of nodes with height ≥ k is a binomial r.v. with
parameters n and qk−1, hence

E[# of nodes with height ≥ k] = nqk−1

Then

nqLn−1 = 1/q =⇒ Ln = logq(1/n) = log1/q n

Performance of skip lists
Ln = the largest level L for which

E[# of nodes with height ≥ L] ≤ 1/q

Probability that a node has height ≥ k is

Pr{height(x) ≥ k} =
∑
i≥k

pqi−1 = pqk−1
∑
i≥0

qi = qk−1

Number of nodes with height ≥ k is a binomial r.v. with
parameters n and qk−1, hence

E[# of nodes with height ≥ k] = nqk−1

Then

nqLn−1 = 1/q =⇒ Ln = logq(1/n) = log1/q n

Performance of skip lists
Ln = the largest level L for which

E[# of nodes with height ≥ L] ≤ 1/q

Probability that a node has height ≥ k is

Pr{height(x) ≥ k} =
∑
i≥k

pqi−1 = pqk−1
∑
i≥0

qi = qk−1

Number of nodes with height ≥ k is a binomial r.v. with
parameters n and qk−1, hence

E[# of nodes with height ≥ k] = nqk−1

Then

nqLn−1 = 1/q =⇒ Ln = logq(1/n) = log1/q n

Performance of skip lists
Ln = the largest level L for which

E[# of nodes with height ≥ L] ≤ 1/q

Probability that a node has height ≥ k is

Pr{height(x) ≥ k} =
∑
i≥k

pqi−1 = pqk−1
∑
i≥0

qi = qk−1

Number of nodes with height ≥ k is a binomial r.v. with
parameters n and qk−1, hence

E[# of nodes with height ≥ k] = nqk−1

Then

nqLn−1 = 1/q =⇒ Ln = logq(1/n) = log1/q n

Performance of skip lists
Then the steps remaining to reach Hn (=the height of a random
skip list of size n) can analyzed this way:

we need not more horizontal steps than nodes with height
≥ Ln, the expected number is ≤ 1/q, by definition
the probability that Hn > k is

1−
(

1− qk
)n
≤ nqk

the expected value of the height Hn can be bounded as

E[Hn] =
∑
k≥0

P[Hn > k] =
∑

0≤k<Ln

P[Hn > k] +
∑
k≥Ln

P[Hn > k]

≤ Ln +
∑
k≥0

P[Hn > Ln + k] = Ln + nqLn
∑
k≥0

qk

= Ln + 1/p

thus the expected additional vertical steps need to reach
Hn from Ln is ≤ 1/p

Performance of skip lists

Summing up, the expected path length of a search is

≤ (Ln − 1)/q + 1/q + 1/p =
1
q

log1/q n + 1/p

On the other hand, the average number of pointers per node is
1/p so there is a trade-off between space and time:

p → 0,q → 1 =⇒ very tall “nodes”, short horizontal cost
p → 1,q → 0 =⇒ flat skip lists
Pugh suggested p = 3/4 as a good practical choice; the
optimal choice minimizes factor (q ln(1/q))−1 =⇒
q = e−1 = 0.36 . . . ,p = 1− e−1 ≈ 0.632 . . .

Analysis of the height

W. Szpankowski V. Rego

E[Hn] = log1/q n +
γ

ln(1/q)
− 1

2
+ χ(log1/q n) +O(1/n)

where γ = 0.577 . . . is Euler’s constant and χ(t) a fluctu-
ation of period 1, mean 0 and small amplitude.

Theorem (Szpankowski and Rego,1990)

Analysis of the forward cost

The number of forward steps Fn,k is the number of weak
left-to-right maxima in ak ,ak−1, . . . ,a1, with ai = height(xi)

12 4240 53 663721

Header

−OO

NIL

OO+

Analysis of the forward cost

The number of forward steps Fn,k is the number of weak
left-to-right maxima in ak ,ak−1, . . . ,a1, with ai = height(xi)

12 4240 53 663721

Header

−OO

NIL

OO+

Analysis of the forward cost

Total unsuccessful search cost

Cn =
∑

0≤k≤n

Cn,k = nHn + Fn

Total forward cost

Fn =
∑

0≤k≤n

Fn,k

Analysis of the forward cost

Total unsuccessful search cost

Cn =
∑

0≤k≤n

Cn,k = nHn + Fn

Total forward cost

Fn =
∑

0≤k≤n

Fn,k

Analysis of the forward cost

P. Kirschenhofer H. Prodinger

The expected total forward cost in a random skip list of
size n is

E[Fn] =

(
1
q
− 1
)
· n ·

(
log1/q n +

γ − 1
ln(1/q)

− 1
2

+
1

ln(1/q)
χ(log1/q n)

)
+O(log n),

where γ = 0.577 . . . is Euler’s constant and χ a periodic
fluctuation of period 1, mean 0 and small amplitude.

Theorem (Kirschehofer, Prodinger, 1994)

Skip Lists in Real Life

Source: Wikipedia

To learn more

[1] L. Devroye.
A limit theory for random skip lists.
The Annals of Applied Probability, 2(3):597–609, 1992.

[2] P. Kirschenhofer and H. Prodinger.
The path length of random skip lists.
Acta Informatica, 31(8):775–792, 1994.

[3] P. Kirschenhofer, C. Martínez and H. Prodinger.
Analysis of an Optimized Search Algorithm for Skip Lists.
Theoretical Computer Science, 144:199–220, 1995.

To learn more (2)

[4] T. Papadakis, J. I. Munro, and P. V. Poblete.
Average search and update costs in skip lists.
BIT, 32:316–332, 1992.

[5] H. Prodinger.
Combinatorics of geometrically distributed random
variables: Left-to-right maxima.
Discrete Mathematics, 153:253–270, 1996.

[6] W. Pugh.
Skip lists: a probabilistic alternative to balanced trees.
Comm. ACM, 33(6):668–676, 1990.

[7] W. Pugh.
A Skip List Cookbook.
Technical Report UMIACS–TR–89–72.1. U. Maryland,
College Park, 1989.

1 Introduction

2 Skip lists

3 Randomized binary search trees

4 Randomized multidimensional data structures

5 Bloom filters

6 Universal hashing

What are binary search trees? –quick remind

A binary search tree (or BST) T of size n ≥ 0 is a bi-
nary tree that stores a set of n (distinct) keys, such that

it is empty when n = 0, or
its root stores a key x , and the remaining n − 1
keys are stored in the left and right subtrees of T ,
say L and R respectively, in such a way that both L
and R are binary search trees and, for any key
u ∈ L, it holds that u < x , and for any key v ∈ R, it
holds that x < v .

Definition

BST: example

BST of size 6 built form keys: 42, 27, 64, 11, 35 and 56.

42

27

11 35 56

64

1
1

3

6

2

1

Random BSTs

In a random binary search tree (built by a random
permutation) any of its n elements is the root with
probability 1/n
Idea: To obtain random BST –independently of any
assumption on the distribution of the input– insert a new
item in a tree of size n as follows:

insert it at the root with probability 1/(n + 1),
otherwise proceed recursively

Random BSTs

In a random binary search tree (built by a random
permutation) any of its n elements is the root with
probability 1/n
Idea: To obtain random BST –independently of any
assumption on the distribution of the input– insert a new
item in a tree of size n as follows:

insert it at the root with probability 1/(n + 1),
otherwise proceed recursively

Random BSTs

In a random binary search tree (built by a random
permutation) any of its n elements is the root with
probability 1/n
Idea: To obtain random BST –independently of any
assumption on the distribution of the input– insert a new
item in a tree of size n as follows:

insert it at the root with probability 1/(n + 1),
otherwise proceed recursively

Random BSTs

In a random binary search tree (built by a random
permutation) any of its n elements is the root with
probability 1/n
Idea: To obtain random BST –independently of any
assumption on the distribution of the input– insert a new
item in a tree of size n as follows:

insert it at the root with probability 1/(n + 1),
otherwise proceed recursively

Randomized binary search trees

C. Aragon R. Seidel

Two incarnations
Randomized treaps (tree+heap) invented by Aragon and
Seidel (FOCS 1989, Algorithmica 1996) use random
priorities and bottom-up balancing
Randomized binary search trees (RBSTs) invented by
Martínez and Roura (ESA 1996, JACM 1998) use subtree
sizes and top-down balancing

Randomized binary search trees

C. Aragon R. Seidel S. Roura

Two incarnations
Randomized treaps (tree+heap) invented by Aragon and
Seidel (FOCS 1989, Algorithmica 1996) use random
priorities and bottom-up balancing
Randomized binary search trees (RBSTs) invented by
Martínez and Roura (ESA 1996, JACM 1998) use subtree
sizes and top-down balancing

Insertion in a RBST

Inserting an item x = 48

42

27

11 35 56

64

1
1

3

6

2

1

Insertion in a RBST

Inserting an item x = 48

42

27

11 35 56

64

1
1

3

6

2

1

48

insert new

item

Insertion in a RBST

Inserting an item x = 48

42

27

11 35 56

64

1
1

3

6

2

1

48

with prob 1/7 insert

at root

Insertion in a RBST

Inserting an item x = 48

48
42

27

11 35 56

64

1
1

3

6

2

1 with prob =1/3

insert at root

Insertion in a RBST

Inserting an item x = 48

42

27

11 351
1

3
48 3

7

56

2

1

64

Insertion in a RBST

procedure INSERT(T , k , v)
n := T → size . n = 0 if T = �
if UNIFORM(0,n) = 0 then

. this will always succeed if T = �
return INSERT-AT-ROOT(T , k , v)

if k < T → key then
T → left := INSERT(T → left, k , v)

else
T → right := INSERT(T → right, k , v)

Update T → size
return T

Insertion in a RBST

To insert a new item x at the root of T , we use the
algorithm SPLIT that returns two RBSTs T− and T+ with
element smaller and larger than x , resp.

〈T−,T+〉 = SPLIT(T , x)

T− = BST for {y ∈ T | y < x}
T+ = BST for {y ∈ T | x < y}

SPLIT is like partition in Quicksort
Insertion at root was invented by Stephenson in 1976

Splitting a RBST

To split a RBST T around x , we need just to follow the path
from the root of T to the leaf where x falls

Splitting a RBST

To split a RBST T around x , we need just to follow the path
from the root of T to the leaf where x falls

L
+

z

x < z

−

+
T = <L , z , R>

+

R

−
T = L

Splitting a RBST & Insertion at Root

. Pre: k is not present in T
procedure SPLIT(T , k , T−, T+)

if T = null then
T− := null; T+ := null; return

if k < T → key then
SPLIT(T → left, k ,L−,L+)
T → left := L+

Update T → size
T− := L−

T+ := T
else

. “Symmetric” code for k > T → key

Splitting a RBST

Let T− and T+ be the BSTs produced by SPLIT(T , x).
If T is a random BST containing the set of keys K ,
then T− and T+ are independent random BSTs con-
taining the sets of keys K− = {y ∈ T | y < x} and
K+ = {y ∈ T | y > x}, respectively.

Lemma

Insertion in RBSTs

If T is a random BST that contains the set of keys K
and x is any key not in K , then INSERT(T , x) produces
a random BST containing the set of keys K ∪ {x}.

Theorem

The Cost of Insertions

The cost of the insertion at root (measured # of visited
nodes) is exactly the same as the cost of the standard
insertion
For a random(ized) BST the cost of insertion is the depth
of a random leaf in a random binary searh tree:

E[In] = 2 ln n +O(1)

The Cost of Insertions

The recurrence of E[In]:

E[In] = 1 +
1
n

∑
1≤j≤n

j
n + 1 E

[
Ij−1
]

+
n − j + 1

n + 1 E
[
In−j
]

To solve this recurrence the Continuous Master Theorem
(Roura, 20021) [stay tuned!] comes handy
We need to produce O(log n) random numbers on average
to insert an item

The Cost of Insertions

The recurrence of E[In]:

E[In] = 1 +
1
n

∑
1≤j≤n

j
n + 1 E

[
Ij−1
]

+
n − j + 1

n + 1 E
[
In−j
]

To solve this recurrence the Continuous Master Theorem
(Roura, 20021) [stay tuned!] comes handy
We need to produce O(log n) random numbers on average
to insert an item

The Cost of Insertions

The recurrence of E[In]:

E[In] = 1 +
1
n

∑
1≤j≤n

j
n + 1 E

[
Ij−1
]

+
n − j + 1

n + 1 E
[
In−j
]

To solve this recurrence the Continuous Master Theorem
(Roura, 20021) [stay tuned!] comes handy
We need to produce O(log n) random numbers on average
to insert an item

RBST resulting from the insertion of 500 keys in ascending
order

Source: R. Sedgewick, Algorithms in C (3rd edition), 1997

Deletions in RBSTs

The fundamental problem is how to remove the root node
of a BST, in particular, when both subtrees are not empty
The original deletion algorithm by Hibbard was assumed to
preserve randomness
In 1975, G. Knott discovered that Hibbard’s deletion
preserves randomness of shape, but an insertion following
a deletion would destroy randomness (Knott’s paradox)

Deletions in RBSTs

J. Culberson J.L. Eppinger D.E. Knuth

Several theoretical and experimental work aimed at
understanding what was the effect of deletions, e.g.,

Jonassen & Knuth’s An Algorithm whose Analysis Isn’t
(JCSS, 1978)
Knuth’s Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)
Eppinger’s experiments (CACM, 1983)
Culberson’s paper on deletions of the left spine (STOC,
1985)

These studies showed that deletions degraded
performance in the long run

Deletions in RBSTs

procedure DELETE(T , k)
if T = � then

return T
if k = T → key then

return DELETE-ROOT(T)

if x < T → key then
T → left := DELETE(T → left, k)

else
T → right := DELETE(T → right, k)

Update T → size
return T

Deletions in RBSTs

We delete the root using a procedure JOIN(T1,T2). Given two
BSTs such that for all x ∈ T1 and all y ∈ T2, x ≤ y , it returns a
new BST that contains all the keys in T1 and T2.

JOIN(�,�) = �

JOIN(T ,�) = JOIN(�,T) = T
JOIN(T1,T2) = ?, T1 6= �,T2 6= �

Joining two BSTs

L
1

x

T T
1

R
1

L R2 2

y

2

Joining two BSTs

L
1

x

join(R , T)

R
1

L R2 2

y1 2

Joining two BSTs

If we systematically choose the root of T1 as the root of
JOIN(T1,T2), or the other way around, we will introduce an
undesirable bias
Suppose both T1 and T2 are random. Let m and n denote
their sizes. Then x is the root of T1 with probability 1/m
and y is the root of T2 with probability 1/n
Choose x as the common root with probability m/(m + n),
choose y with probability n/(m + n)

1
m
× m

m + n
=

1
m + n

1
n
× n

m + n
=

1
m + n

Joining two RBSTs

Let L and R be two independent random BSTs, such
that the keys in L are strictly smaller than the keys in
R. Let KL and KR denote the sets of keys in L and R,
respectively. Then T = JOIN(L,R) is a random BST that
contains the set of keys K = KL ∪ KR.

Lemma

Joining two RBSTs

The recursion for JOIN(T1,T2) traverses the rightmost
branch (right spine) of T1 and the leftmost branch (left
spine) of T2

The trees to be joined are the left and right subtrees L and
R of the i th item in a RBST of size n; then

length of left spine of L = path length to i th leaf
length of right spine of R = path length to (i + 1)th leaf

The cost of the joining phase is the sum of the path lengths
to the leaves minus twice the depth of the i th item; the
expected cost follows from well-known results(

2− 1
i
− 1

n + 1− i

)
= O(1)

Deletions in RBSTs

If T is a random BST that contains the set of keys K ,
then DELETE(T , x) produces a random BST containing
the set of keys K \ {x}.

Theorem

Deletions in RBSTs

If T is a random BST that contains the set of keys K ,
then DELETE(T , x) produces a random BST containing
the set of keys K \ {x}.

Theorem

The result of any arbitary sequence of insertions and
deletions, starting from an initially empty tree is always a
random BST.

Corollary

Additional remarks

Arbitrary insertions and deletions yield always random
BSTs
A deletion algorithm for BSTs that preserved randomness
was a long standing open problem (10-15 yr)
Properties of random BSTs have been investigated in
depth and for a long time
Treaps only need to generate a single random number per
node (with O(log n) bits)
RBSTs need O(log n) calls to the random generator per
insertion, and O(1) calls per deletion (on average)

Additional remarks

Storing subtree sizes for balancing is more useful: they
can be used to implement search and deletion by rank,
e.g., find the i th smallest element in the tree
Other operations, e.g., union and intersection are also
efficiently supported by RBSTs
Similar ideas have been used to randomize other search
trees, namely, K -dimensional binary search trees (Duch
and Martínez, 1998) and quadtrees (Duch, 1999) (stay
tuned!)

To learn more

[1] C. Martínez and S. Roura.
Randomized binary search trees.
J. Assoc. Comput. Mach., 45(2):288–323, 1998.

[2] R. Seidel and C. Aragon.
Randomized search trees.
Algorithmica, 16:464–497, 1996.

To learn more (2)

[3] J. L. Eppinger.
An empirical study of insertion and deletion in binary
search trees.
Comm. of the ACM, 26(9):663—669, 1983.

[4] W. Panny.
Deletions in random binary search trees: A story of errors.
J. Statistical Planning and Inference, 140(8):2335–2345,
2010.

[5] H. M. Mahmoud.
Evolution of Random Search Trees.
Wiley Interscience, 1992.

1 Introduction

2 Skip lists

3 Randomized binary search trees

4 Randomized multidimensional data structures

5 Bloom filters

6 Universal hashing

Why Multidimensional?
Nowadays data:

Points, lines,
rivers, maps, cities, roads,
hyperplanes, cubes, hypercubes,
mp3, mp4 and mp5 files,
jpeg files, pixels,
. . . ,

Used in applications such as:
database design, geographic information systems (GIS),
computer graphics, computer vision, computational
geometry, image processing,
pattern recognition,
very large scale integration (VLSI) design,
. . .

This course. . .

Data: File of K -dimensional points, K -tuples of the form:

x = (x0, x1, . . . , xK−1)

Retrieval: associative queries that involve more than one of
the K dimensions
Data structures: two generalisations of RBSTs

Randomized K -d trees and
Randomized quad trees

Standard K -d trees

Standard K -d trees

Standard K -d trees

Standard K -d trees

Standard K -d trees

Standard K -d Trees

A standard K -d tree T of size n ≥ 0 is a binary tree that
stores a set of n K -dimensional points, such that

it is empty when n = 0, or
its root stores a key x and a discriminant
j = level of the root mod K , 0 ≤ j < K , and the
remaining n − 1 records are stored in the left and
right subtrees of T , say L and R, in such a way that
both L and R are K -d trees; furthermore, for any
key u ∈ L, it holds that uj < xj , and for any key
v ∈ R, it holds that xj < vj .

Definition (Bentley75)

2-d Quad Trees

A quad tree for a file of 2-dimensional records, is a
quaternary tree in which:

1 Each node contains a 2-dimensional key and has
associated four subtrees corresponding to the
quadrants NW , NE , SE and SW .

2 For every node with key x the following invariant is
true: any record in the NW subtree with key y
satisfies y1 < x1 and y2 ≥ x2; any record in the NE
subtree with key y satisfies y1 ≥ x1 and y2 ≥ x2;
any record in the SE subtree with key y satisfies
y1 ≥ x1 and y2 < x2; and, any record in the SW
subtree with key y satisfies y1 < x1 and y2 < x2.

Definition (Bentley & Finkel, 1974)

2-d Quad Trees

2-d Quad Trees

2-d Quad Trees

2-d Quad Trees

Quad Trees, K ≥ 2

A quad tree T of size n ≥ 0 stores a set of n K -
dimensional records. The quad tree T is a 2K -ary tree
such that

either it is empty and n = 0, or
its root stores a record with key x and has 2K

subtrees, each one associated to a K -bitstring
w = w0w1 . . .wK−1 ∈ {0,1}K , and the remaining
n − 1 records are stored in one of these subtrees,
let’s say Tw , in such a way that ∀w ∈ {0,1}K : Tw is
a quad tree, and for any key y ∈ Tw , it holds that
yj < xj if wj = 0 and yj > xj otherwise, 0 ≤ j < K .

Definition (Bentley & Finkel, 1974)

Randomized K -d trees and Quad trees

Goal Dynamic tree that supports all operations with good
expected performance (less than linear) and using Θ(nK)
memory space.
Problems

The trees can be very unbalanced.
The rule to assign discriminants in K -d trees complicates
updates.
Deletion of nodes into two-dimensional quad trees is
complicated.

Finkel and Bentley (1974) suggested that all nodes of the
tree rooted at the deleted node must be reinserted, but this
is usually expensive.
A more efficient process developed by Sammet (1980)
allows to reduce the number of nodes to be reinserted,
although it is still an expensive and not straightforward
process.

Idea: insertions and deletions similar to RBSTs.

Relaxed K -d trees: first level of randomization

A relaxed K -d tree (Duch, Estivill-Castro, Martínez, 1998) for a
set of K -dimensional keys is a binary tree in which:

1 Each node contains a K -dimensional record and has
associated an arbitrary discriminant j ∈ {0,1, . . . ,K − 1}.

2 For every node with key x and discriminant j , the following
invariant is true: any record in the right subtree with key y
satisfies yj < xj and any record in the left subtree with key
y satisfies yj ≥ xj .

Relaxed K -d trees: first level of randomization

Relaxed K -d trees: first level of randomization

1

1

Relaxed K -d trees: first level of randomization

1

2

1

2

Relaxed K -d trees: first level of randomization

1

2

1

2

3
3

Relaxed K -d trees: first level of randomization

1

2

1

2

3
3

4

4

Relaxed K -d trees: first level of randomization

1

2

1

2

3
3

4

4

5 5

Insertion
INPUT: Random Relaxed K -d tree (or random quad tree) of
size n keeping the set of K -dimensional keys S, K -dimensional
point x .
OUTPUT: Random Relaxed K -d tree (or random quad tree) of
size n + 1 keeping the set of K -dimensional keys S ∪ {x}.

Insertion at the root: Randomized relaxed K -d trees

Insertion at the root: Randomized quad trees

Updates in Randomized relaxed K -d trees and quad
trees

If T is a randomized relaxed K -d tree (or a random-
ized quad tree) that contains the set of keys S and x
is any key not in S, then INSERT(T , x) produces a ran-
domized relaxed K -d tree (or a randomized quad tree
respectively) containing the set of keys S ∪ {x}.

Theorem

If T is a randomized relaxed K -d tree (or a randomized
quad tree) that contains the set of keys S and x is any
in T , then DELETE(T , x) produces a randomized re-
laxed K -d tree (or a randomized quad tree respectively)
containing the set of keys S − {x}.

Theorem

The Cost of Updates

K -d trees:
Case K = 2: The cost of the updates (measured # of visited
nodes) is equivalent to the expected height of the tree
which is the same as for BSTs (Duch & Martínez, 2009).
Case K > 2: Unfortunately the cost of the updates is no
longer logarithmic (Duch & Martínez, 2009).

Quad trees:
Not analyzed. Conjecture: similar to K -d trees.
For a random(ized) quad tree of size n, the expected height
Hn is asymptotically (c/K) log n, where c = 4.31107 . . .
(Devroye, 1987). It has been shown independently by
Devroye and Laforest (1990) and Flajolet et al.(1993) that
the expected cost of a random search in a random
K -dimensional quad tree of size n − 1 is (2/K) log n.

Randomization: what for? Associative retrieval

Multidimensional data structures must support:
Usual insertions, deletions, (exact) queries
Associative queries such as:
Partial Match Queries: Find the data points that match

some specified coordinates of a given query
point q.

Orthogonal Range Queries: Find the data points that fall
within a given hyper rectangle Q (specified by
K ranges).

Nearest Neighbor Queries: Find the closest data point to
some given query point q (under a predefined
distance).

Associative Queries

Random Partial Match Queries

Given a file F of n K -dimensional records and a query
q = (q0,q1, . . . ,qK−1) where each qi is either a value
in Di (it is specified) or ∗ (it is unspecified), a partial
match query returns the subset of records x in F whose
attributes coincide with the specified attributes of q. This
is,

{x ∈ F | qi = ∗ or qi = xi , ∀i ∈ {0, . . . ,K − 1}}.

Definition

Example of Partial Match Queries

Query: q = (∗,q2) or q = (q1,q2) with specification pattern: 01

� �
� �
� �
� �

� �
� �

�
�

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �

	 	
	 	
	 	

� �
� �

� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

Partial Match Algorithm in Relaxed K -d Trees

Partial match search in relaxed K -d trees works as follows:
At each node of the tree we verify if it satisfies the query
and we examine its discriminant.
If the discriminant is specified in the query then the
algorithm recursively follows in the appropriate subtree
depending on the result of the comparison between the
key and the query.
Otherwise the algorithm recursively follows the two
subtrees of the node.

Random Partial Match Algoritm

procedure RANDOM_PM(T , u, q)
. T : tree, u: specification pattern, q: query
if T 6= � then . nothing to do if T were empty

i = T → discr
if MATCH(T → key,u,q) then

REPORT(T → key)

if u[i] = 1 then . Coordinate i specified
if q < T → key then

RANDOM_PM(T → left,u,q)
else

RANDOM_PM(T → right,u,q)

else . Coordinate i not specified
RANDOM_PM(T → left,u,q)
RANDOM_PM(T → right,u,q)

The Recurrence of Partial Match Searches

Following the random model at each node:
With probability s

K the discriminant will be specified in the
query and the algorithm will follow one of the subtrees.
With probability K−s

K the algorithm will follow the two
subtrees.
Hence, the cost M(T) of a Partial Match Search in a
relaxed K -d tree T of size n with left subtree L of size ` and
right subtree R is:
M(T | |L| = `) = 1 + s

K

(
`+1
n+1M(L) + n−`

n+1M(R)
)

+ K−s
K (M(L) + M(R)).

The Expected Cost of Partial Match

The expected cost Mn (measured as the number of
comparisons) of a PM query with s out of K coordinates
specified in a random(ized) relaxed K -d tree of size n is

Mn = βnα +O(1),

where

α = α(s/K) = 1− s
K

+ φ(s/K)

β = β(s/K) =
Γ(2α + 1)

(1− s/K)(α + 1)Γ3 (α + 1)

with
φ(x) =

√
9− 8x/2+x−3/2 and Γ(x) the Euler’s Gamma

function.

Theorem (Duch et al., 1998)

Solving the Recurrence of Partial Match Searches

In order to get the cost of partial match searches we follow the
next steps:

Take averages for all possible values of ` in the cost
equation.
Simplify by taking symmetries in the resulting recurrence.
Translate the recurrence into a hypergeometric differential
equation on the corresponding generating function.
Solve the differential equation and obtain the generating
function of the average cost of partial match.
Use transfer lemmas to extract the coefficients of the
average cost of partial match.

Comparison with standard K -d trees

Randomized relaxed K -d trees are fully dynamic.
The expected performance of randomized relaxed K -d
trees does not depend on any supposition regarding the
distribution of the input.
The α coefficient for standard K -d trees is slightly smaller,
but the analysis is more complicated since it involves the
solution of a system of differential equations, one for each
level of the tree and depending on the query pattern
(Flajolet & Puech, 1986).
The β coefficient for standard K -d trees is dependent on
the specification pattern (Flajolet & Puech, 1986; Chern &
Hwang, 2006).

To learn more

[1] J. L. Bentley.
Multidimensional binary search trees used for associative
retrieval.
Communications of the ACM, 18(9):509–517, 1975.

[2] J. L. Bentley and R. A. Finkel.
Quad trees: A data structure for retrieval on composite
keys.
Acta Informatica, 4:1–9, 1974.

[3] H. H. Chern and H. K. Hwang.
Partial match queries in random k -d trees.
SIAM J. on Computing, 35(6):1440–1466, 2006.

[4] H. H. Chern and H. K. Hwang.
Partial match queries in random quad trees.
SIAM Journal on Computing, 32(4):904–915, 2003.

To learn more (2)

[5] L. Devroye.
Branching processes in the analysis of the height of trees.
Acta Informatica, 24:277–298, 1987.

[6] L. Devroye and L. Laforest.
An analysis of random d-dimensional quadtrees.
SIAM Journal on Computing, 19(5):821–832, 1990.

[7] A. Duch.
Randomized insertion and deletion in point quad trees.
In Int. Symposium on Algorithms and Computation
(ISAAC), LNCS. Springer–Verlag, 2004.

[8] A. Duch, V. Estivill-Castro, and C. Martínez.
Randomized K -dimensional binary search trees.
In K.-Y. Chwa and O. H. Ibarra, editors, Int. Symposium on
Algorithms and Computation (ISAAC’98), volume 1533 of
LNCS, pages 199–208. Springer-Verlag, 1998.

To learn more (3)

[9] A. Duch and C. Martínez.
On the average performance of orthogonal range search
in multidimensional data structures.
Journal of Algorithms, 44(1):226–245, 2002.

[10] A. Duch and C. Martínez.
Updating relaxed k-d trees.
ACM Transactions on Algorithms (TALG), 6(1):1–24, 2009.

[11] Ph. Flajolet, G. Gonnet, C. Puech, and J. M. Robson.
Analytic variations on quad trees.
Algorithmica, 10:473–500, 1993.

[12] Ph. Flajolet and C. Puech.
Partial match retrieval of multidimensional data.
Journal of the ACM, 33(2):371–407, 1986.

To learn more (4)

[13] C. Martínez, A. Panholzer, and H. Prodinger.
Partial match queries in relaxed multidimensional search
trees.
Algorithmica, 29(1–2):181–204, 2001.

[14] R. Neininger.
Asymptotic distributions for partial match queries in K -d
trees.
Random Structures and Algorithms, 17(3–4):403–4027,
2000.

[15] R. L. Rivest.
Partial-match retrieval algorithms.
SIAM Journal on Computing, 5(1):19–50, 1976.

[16] H. Samet.
Deletion in two-dimensional quad-trees.
Communications of the ACM, 23(12):703–710, 1980.

1 Introduction

2 Skip lists

3 Randomized binary search trees

4 Randomized multidimensional data structures

5 Bloom filters

6 Universal hashing

Bloom filters

A Bloom Filter is a probabilistic data structure representing a
set of items; it supports:

Addition of items: F := F ∪ {x}
Fast lookup: x ∈ F?

Bloom filters do require very little memory and are specially
well suited for unsuccessful search (when x 6∈ F)

Bloom filters

The price to pay for the reduced memory consumption and
very fast lookup is the non-null probability of false positives.
If x ∈ F then a lookup in the filter will always return true;
but if x 6∈ F then there is some probability that we get a
positive answer from the filter.
In other words, if the filter says x 6∈ F we are sure that’s the
case, but if the filter says x ∈ F there is some probability
that this is an error.

Bloom filters

Bloom filters are the most basic example of the so-called
Approximate Membership Query Filters (AMQ filters) and
support the following operations:

1 F := CREATEBF(Nmax, fp): creates an empty Bloom filter F
that might store up to Nmax items, and sets an upper bound
fp on the false positive rate allowed

2 F .INSERT(x): add item x to filter F
3 F .LOOKUP(x): returns whether x belongs to the filter F or

not
if the answer is true, it might be wrong with probability ≤ fp
if the answer is false, then x 6∈ F for sure

Implementing Bloom filters

To represent a Bloom filter for a subset of items drawn from the
domain U we will use:

1 A bitvector A of size M
2 A set of k pairwise independent hash functions
{h1, . . . ,hk}, each hi : U → {0, . . . ,M − 1}

The values of M and k are carefully chosen as a function of
Nmax and fp

Implementing Bloom filters

procedure CREATEBF(Nmax, fp)
M := . . .; k := . . .
A : bitvector[0..M − 1]
for i := 0 to M − 1 do A[i] := 0
for j := 1 to k do hi := a random hash function

The k independent hash functions can be choosen from a
universal class of hash functions (later in this course)

Insertion & lookup

procedure INSERT(x)
for j := 1 to k do

A[hj (x)] := 1

procedure LOOKUP(x)
for j := 1 to k do

if A[hj (x)] = 0 then
return false

return true

Insertion & lookup

Source: D. Medjedovic & E. Tahirovic, Algorithms and Data
Structures for Massive Datasets, 2022

Insertion & Lookup

Source: D. Medjedovic & E. Tahirovic, Algorithms and Data
Structures for Massive Datasets, 2022

Analysis of Bloom filters

Probability that the j-th bit is not updated when inserting x

k∏
i=1

P[hi(x) 6= j] =

(
1− 1

M

)k

Probability that the j-th bit is not updated after n insertions

n∏
`=1

P[A[j] is not updated in `-th insertion] =((
1− 1

M

)k
)n

=

(
1− 1

M

)k ·n

Analysis of Bloom filters

Probability that A[j] = 1 after n insertions

1−
(

1− 1
M

)k ·n

Probability that k checked bits are set to 1 ≈ probability of
a false positive(

1−
(

1− 1
M

)k ·n
)k

≈
(

1− e−kn/M
)k

if n = αM, for some α > 0(
1− a

x

)bx
→ e−ba, x →∞

Analysis of Bloom filters

The derivation above is the so-called classic model for
Bloom filters—but it is not the formula that Bloom himself
derived in his paper!
The approximation fails for small filters; correct formulas
have been derived by Bose et al. (2008) and Christensen
et al. (2010)
For the rest of the presentation we will take

P[x is a false positive] = P[x 6∈ F ∧ F .contains(x) = true]

≈
(

1− e−kn/M
)k
,

where x is drawn at random. Be careful! The formula does
not give the probability that the filter reports x as a positive,
conditioned to x being negative!

Optimal parameters for Bloom filters

Fix n and M. The optimal value k∗ minimizes the
probability of false positive, thus

d
dk

[(
1− e−kn/M

)k
]

k=k∗
= 0

which gives

k∗ ≈ M
n

ln 2 ≈ 0.69
M
n

Call p the probability of a false positive. This probability is
a function of k , p = p(k); for the optimal choice k∗ we have

p(k∗) ≈
(

1− e− ln 2
)M

n ln 2
=

(
1
2

)ln 2 M
n

≈ 0.6185
M
n

Optimal parameters for Bloom filters

Suppose that you want the probability of false positive
p∗ = p(k∗) to remain below some bound P

p∗ ≤ P =⇒ ln p∗ = −M
n

(ln 2)2 ≤ ln P

M
n

(ln 2)2 ≥ − ln P = ln(1/P)

M
n
≥ 1

ln 2
log2(1/P) ≈ 1.44 log2(1/P)

M ≥ 1.44 · n · log2(1/P)

Optimal parameters for Bloom filters

procedure CREATEBF(Nmax, fp)
M := 1.44 · Nmax · log2(1/fp);
k := log2(1/fp)
. . .

Optimal parameters for Bloom filters

If we want a Bloom filter for a database that will store about
n ≈ 108 elements and a false positive rate ≤ 5%, we need
a bitvector of size M ≥ 624 · 106 bits (that’s around 74MB
of memory).
Despite this amount of memory is big, it is only a small
fraction of the size of the database itself: even if we store
only keys of 32 bytes each, the database occupies more
than 3GB.
The optimal number k∗ of hash functions for the example
above is 4.32 (=⇒ use 4 or 5 hash functions for optimal
performance)

To learn more

[1] B.H. Bloom.
Space/Time Trade-offs in Hash Coding with Allowable
Errors.
Communications of the ACM 13 (7): 422–426, 1970.

[2] A. Broder and M. Mitzenmacher.
Network Applications of Bloom Filters: A Survey
Internet Mathematics 1 (4):485–509, 2003.

To learn more (2)

[3] P. Bose, H. Guo, E.Kranakis et al.
On the False-Positive Rate of Bloom Filters
Information Processing Letters 108 (4):210–213, 2004.

[4] K. Christensen, A. Roginsky and M. Jimeneo.
A New Analysis of the False-Positive Rate of a Bloom
Filter
Information Processing Letters 110 (21):944–949, 2010.

1 Introduction

2 Skip lists

3 Randomized binary search trees

4 Randomized multidimensional data structures

5 Bloom filters

6 Universal hashing

Universal hashing

M. N. Wegman

A class
H = {h |h : U → [0..M − 1]}

of hash functions is universal iff, for all x , y ∈ U with x 6=
y we have

P[h(x) = h(y)] ≤ 1
M
,

where h is a hash function randomly drawn from H

Definition

Universal hashing

A stronger property is pairwise independence (a.k.a. strong
universality). A class is strongly universal iff, for all x , y ∈ U with
x 6= y and any two values i , j ∈ [0..M − 1]

P[h(x) = i ∧ h(y) = j] =
1

M2

Strong universality implies universality; moreover

P[h(x) = i] =
1
M

for any x and i .

Universal hashing

Let H be a universal class and h ∈ H drawn at random. For any
fixed set of n keys S ⊆ U we have the following properties:

1 For any x ∈ S, the expected number of elements in S that
hash to h(x) is n/M.

2 The expected number of collisions is O(n2/M). If
M = Θ(n) then the expected number of collisions is O(n).

Universal hashing

The big questions are:
Are there universal classes? Strongly universal classes?
If so, how complicated are its members? How much effort
does it take to compute and represent the functions in the
class?

Universal hashing

In 1977 Carter and Wegman introduced the concept of
universal class of hash functions and gave the first construction.
In what follows we put the universe U into one-to-one
correspondence with [0..U − 1] (U = |U|).

Let U = |U| and let p be a prime number ≥ U. The
class

H = {ha,b : U → [0..M − 1] |0 < a < p,0 ≤ b < p}

is (strongly) universal, with

ha,b(x) = ((ax + b) mod p) mod M

Theorem

Universal hashing

The ingredients we need are thus a BIG prime p; picking a
hash function at random from H amounts to choosing two
integers a and b at random.
Let r = dlog2(U + 1)e. The prime number p and the numbers a
and b will need roughly r bits each. For instance, if our universe
are ASCII strings of length at most 30, U ≈ 25630 and r ≈ 240
bits; these are huge numbers and a fast primality test is a
must-have for a practical scheme.

Universal hashing

Suppose that ha,b has been picked at random and let x and y
be two distinct keys that collide

ha,b(x) = ha,b(y)

Therefore
ax + b ≡ ay + b + λ ·M (mod p)

for some integer λ ≥ 0, λ ≤ p/M.

Universal hashing

Since x 6= y , x − y 6= 0, hence x − y has an inverse
multiplicative in the ring Zp, denote it (x − y)−1.
Hence

ax ≡ ay + λ ·M (mod p)

a(x − y) ≡ λ ·M (mod p)

a ≡ (x − y)−1 · λ ·M (mod p)

Universal hashing

There are p − 1 possible choices for a and bp/Mc possible
values for λ; hence the probability of collision is

≤ bp/Mc
p − 1

≈ 1
M

for sufficiently large p.

Universal hashing

Notice that b plays no rôle in the universality of the family. We
might have choosen b = 0 or any other convenient fixed value.
However, picking b at random makes the class strongly
universal.

To learn more

[1] L. Carter and M.N. Wegman.
Universal Classes of Hash Functions.
Journal of Computer and System Sciences, 18 (2):
143–154, 1979.

[2] O. Kaser and D. Lemire.
Strongly universal string hashing is fast.
Computer Journal (published on-line in 2013)

General References

[1] Ph. Flajolet and R. Sedgewick.
Analytic Combinatorics.
Cambridge University Press, 2008.

[2] D. E. Knuth.
The Art of Computer Programming: Sorting and
Searching, volume 3.
Addison-Wesley, 2nd edition, 1998.

[3] C. Pandu Rangan.
Randomized Data Structures, in Handbook of Data
Structures and Applications.
D.P. Mehta and S. Sahni, editors.
Chapman & Hall, CRC, 2005.

General References (2)

[4] P. Raghavan and R. Motwani.
Randomized Algorithms.
Cambridge University Press, 1995.

[5] M. Mitzenmacher and E. Upfal.
Probability and computing: Randomized algorithms and
probabilistic analysis.
Cambridge University Press, 2005.

General References (3)

[6] R. Sedgewick.
Algorithms in C.
Addison-Wesley, 3rd edition, 1997.

[7] R. Sedgewick and K. Wayne.
Algorithms.
Addison-Wesley, 4th edition, 2011.

[8] D. Medjedovic and E. Tahirovic.
Algorithms and Data Structures for Massive Datasets
Manning, 2022.

THANK YOU FOR YOUR
PARTICIPATION!

	Introduction
	Skip lists
	Randomized binary search trees
	Randomized multidimensional data structures
	Bloom filters
	Universal hashing

