Approximation Algorithms

Cristina G. Fernandes University of São Paulo, Brazil

Guanajuato, Nov 7th, 2022

LATIN 2022

15th Latin American Theoretical Informatics Symposium

Outline of the tutorial

Part 1:

- Approximation algorithms: an example and definitions
- Clustering problems: k-center and k-median
- Bottleneck problems: 2-approximation for k-center
- Local search: $(3 + \epsilon)$ -approximation for k-median

Part 1:

- Approximation algorithms: an example and definitions
- Clustering problems: k-center and k-median
- Bottleneck problems: 2-approximation for k-center
- Local search: $(3 + \epsilon)$ -approximation for k-median

Part 2:

- Probabilistic strategies: 0.5-approximation for MaxSAT
- Linear programming: 0.63-approximation for the MaxSAT
- Mixed strategies: 0.75-approximation for the MaxSAT
- Closing remarks

Scheduling in identical machines

Given: m machines n jobs processing time t_i of job i (i = 1, ..., n)

Scheduling in identical machines

Given: *m* machines *n* jobs processing time t_i of job *i* (i = 1, ..., n)

a scheduling is a partition $\{M_1, \ldots, M_m\}$ of $\{1, \ldots, n\}$.

m = 3 and n = 7

m = 3 and n = 7

m = 3 and n = 7

partition $\{\{1, 4, 7\}, \{2, 5\}, \{3, 6\}\} \Rightarrow makespan = 13$

Cristina G. Fernandes

m = 3 and n = 7

partition $\{\{1, 2, 3\}, \{4, 5\}, \{6, 7\}\} \Rightarrow makespan = 12$

Cristina G. Fernandes

Problem

Find a scheduling with minimum makespan.

partition $\{\{1,4\},\{2,3\},\{5,6,7\}\} \Rightarrow makespan = 9$

Cristina G. Fernandes

Hardness

Scheduling on two machines: given *n* and *t*, find a scheduling for two machines with minimum makespan.

Hardness

Scheduling on two machines: given *n* and *t*, find a scheduling for two machines with minimum makespan.

Partition: Given a set S numbers, decide if there is a subset $X \subseteq S$ such that $\sum_{s \in X} s = \sum_{s \in S \setminus X} s$.

Cristina G. Fernandes

Hardness

Scheduling on two machines: given n and t,

find a scheduling for two machines with minimum makespan.

Even this particular case is NP-hard, that is, if there is a polynomial-time algorithm for this case, then P = NP.

Assign each job, one by one, to the first available machine.

Graham's algorithm is polynomial.

How bad can the makespan be?

Bounds on $\ensuremath{\mathsf{OPT}}$

OPT = minimum makespan

OPT = minimum makespan

• Largest processing time of a job:

 $OPT \geq \max\{t_1, t_2, \ldots, t_n\}$

OPT = minimum makespan

• Largest processing time of a job:

 $OPT \geq \max\{t_1, t_2, \ldots, t_n\}$

• Balanced distribution:

$$OPT \geq \frac{t_1 + t_2 + \dots + t_n}{m}$$

Makespan of Graham's scheduling

 T_G : makespan of the algorithm

job *i*: job that finishes at time T_G

time T: time previous to the starting time of job *i*

Makespan of Graham's scheduling

 T_G : makespan of the algorithm

job *i*: job that finishes at time T_G

time T: time previous to the starting time of job *i*

Quality of Graham's scheduling

$$T_G = T + t_i$$

$$< OPT + \max\{t_1, ..., t_n\}$$

$$\leq OPT + OPT$$

$$= 2 OPT$$

Approximation algorithm

Context:

- Π : optimization problem (minimization)
- cost(S, I): cost of the feasible solution S for instance I of Π
- OPT(I): minimum cost of a feasible solution for instance I of Π

Approximation algorithm

Context:

- Π : optimization problem (minimization)
- cost(S, I): cost of the feasible solution S for instance I of Π
- OPT(I): minimum cost of a feasible solution for instance I of Π

Algorithm for Π :

given any instance I for Π , produces a feasible solution for I.

A(I): solution produced by algorithm A on instance I

Approximation algorithm

Context:

- Π : optimization problem (minimization)
- cost(S, I): cost of the feasible solution S for instance I of Π
- OPT(I): minimum cost of a feasible solution for instance I of Π

Algorithm for Π :

given any instance I for Π , produces a feasible solution for I.

A(I): solution produced by algorithm A on instance I

Approximation algorithm

if A is polynomial and there exists a number $\alpha \geq 1$ such that $\cot(A(I), I) \leq \alpha \operatorname{OPT}(I)$ for every instance I of Π ,

then A is an α -approximation.

Input: positive integers m and n, and an array t[1 ... n]Output: a scheduling of $\{1, ..., n\}$ in m machines.

Graham's algorithm is a 2-approximation.

Cristina G. Fernandes

Input: positive integers m and n, and an array t[1 ... n]Output: a scheduling of $\{1, ..., n\}$ in m machines.

Exercise 1:

What if we schedule the jobs in decreasing order of the processing time?

Cristina G. Fernandes

Clustering problems

Classical k-center

Given:

- a positive integer k,
- \bullet a set V of elements, and
- a function $d: V imes V o \mathbb{Q}^+$,

Clustering problems

Classical k-center

Given:

- a positive integer k,
- a set V of elements, and
- a function $d: V imes V o \mathbb{Q}^+$,

find a set $S \subseteq V$ with |S| = k that ...

Clustering problems

Classical k-center

Given:

- a positive integer k,
- a set V of elements, and
- a function $d: V imes V o \mathbb{Q}^+$,

find a set $S \subseteq V$ with |S| = k that minimizes $\max_{u \in V} \min_{v \in S} d(u, v)$.

Clustering problems

Classical k-center

Given:

- a positive integer k,
- a set V of elements, and
- a function $d: V imes V o \mathbb{Q}^+$,

find a set $S \subseteq V$ with |S| = k that minimizes $\max_{u \in V} \min_{v \in S} d(u, v)$.

Dominating set: set S of vertices of G such that each vertex of G is in S or has a neighbor in S.

Graph G

Dominating set: set S of vertices of G such that each vertex of G is in S or has a neighbor in S.

Dominating set: set S of vertices of G such that each vertex of G is in S or has a neighbor in S.

Reduction to a *k*-center instance: take the same k, V = V(G) and d(x, y) = 1 if x and y are adjacent in G, and d(x, y) = M otherwise.

Dominating set: set S of vertices of G such that each vertex of G is in S or has a neighbor in S.

Reduction to a *k*-center instance: take the same k, V = V(G) and d(x, y) = 1 if x and y are adjacent in G, and d(x, y) = M otherwise.

Theorem

There is a dominating set of size k in G if and only if there is a k-center solution of radius 1 for the instance (k, V, d).

Inapproximability

Graph G

The *k*-center instance is V = V(G) and d(x, y) = 1 if x and y are adjacent in G, and d(x, y) = M otherwise.

Hard even to approximate:

An α -approximation for k-center with $\alpha < M$ solves dominating set.

Inapproximability

The *k*-center instance is V = V(G) and d(x, y) = 1 if x and y are adjacent in G, and d(x, y) = M otherwise.

Hard even to approximate:

An α -approximation for k-center with $\alpha < M$ solves dominating set.

Theorem

There is no α -approximation for the k-center problem, unless P = NP.

Cristina G. Fernandes

Approximation Algorithms

Too hard to approximate?

What to do?

Restrict attention to specific classes of instances.

Too hard to approximate?

What to do?

Restrict attention to specific classes of instances.

A function $d: V \times V \rightarrow \mathbb{Q}^+$ is a metric if, for every $x, y, w \in V$,

- d(x, y) = d(y, x) (symmetry)
- $d(x,y) \leq d(x,w) + d(w,y)$

(triangle inequality)

Such a function d is called a distance function.

Metric instances

If d is a distance function, then the instance is metric.

Metric instances

If d is a distance function, then the instance is metric.

The *k*-center instance built from the dominating set instance: d(x, y) = 1 if x and y are adjacent in G and d(x, y) = M otherwise.

This *k*-center instance is metric only if $M \leq 2$.

Metric instances

If d is a distance function, then the instance is metric.

The *k*-center instance built from the dominating set instance: d(x, y) = 1 if x and y are adjacent in G and d(x, y) = M otherwise.

This *k*-center instance is metric only if $M \leq 2$.

Exercise 2:

How does the previous inapproximability result apply to the metric k-center?

Cristina G. Fernandes

Approximation Algorithms

• Optimal value is the length of an edge

• Optimal value is the length of an edge

• We can "guess" the optimal value

- Optimal value is the length of an edge
- We can "guess" the optimal value
- Consider the corresponding threshold graph

- Optimal value is the length of an edge
- We can "guess" the optimal value
- Consider the corresponding threshold graph
- Approximately solve the unweighted version of the problem, if possible

- Optimal value is the length of an edge
- We can "guess" the optimal value
- Consider the corresponding threshold graph
- Approximately solve the unweighted version of the problem, if possible

Example of bottleneck problem: *k*-center

Instance: positive integer k, set V, and distance function d on V.

- Optimal value is the length of an edge
- We can "guess" the optimal value
- Consider the corresponding threshold graph
- Approximately solve the unweighted version of the problem, if possible

Example of bottleneck problem: *k*-center

Instance: positive integer k, set V, and distance function d on V.

G: complete graph on V with length $\ell(uv) = d(u, v)$ for each edge uv.

Metric *k*-center: positive integer *k* and complete graph *G* on *V* with length $\ell(uv) = d(u, v)$ for each edge *uv*.

Metric *k*-center: positive integer *k* and complete graph *G* on *V* with length $\ell(uv) = d(u, v)$ for each edge *uv*.

Idea for an algorithm:

• Sort edges of G by length: $\ell(e_1) \leq \cdots \leq \ell(e_m)$.

Metric *k*-center: positive integer *k* and complete graph *G* on *V* with length $\ell(uv) = d(u, v)$ for each edge *uv*.

- Sort edges of G by length: $\ell(e_1) \leq \cdots \leq \ell(e_m)$.
- **2** Threshold graph G_i : $G[E_i]$ where $E_i := \{e_1, \ldots, e_i\}$.

Metric *k*-center: positive integer *k* and complete graph *G* on *V* with length $\ell(uv) = d(u, v)$ for each edge *uv*.

- Sort edges of G by length: $\ell(e_1) \leq \cdots \leq \ell(e_m)$.
- **2** Threshold graph G_i : $G[E_i]$ where $E_i := \{e_1, \ldots, e_i\}$.
- i^* : smallest *i* such that G_i has a dominating set of size *k*.

Metric *k*-center: positive integer *k* and complete graph *G* on *V* with length $\ell(uv) = d(u, v)$ for each edge *uv*.

- Sort edges of G by length: $\ell(e_1) \leq \cdots \leq \ell(e_m)$.
- **2** Threshold graph G_i : $G[E_i]$ where $E_i := \{e_1, \ldots, e_i\}$.
- i^* : smallest *i* such that G_i has a dominating set of size *k*.
- $\ell(e_{i^*})$: radius of optimal *k*-center solution.

Metric *k*-center: positive integer *k* and complete graph *G* on *V* with length $\ell(uv) = d(u, v)$ for each edge *uv*.

- Sort edges of G by length: $\ell(e_1) \leq \cdots \leq \ell(e_m)$.
- **2** Threshold graph G_i : $G[E_i]$ where $E_i := \{e_1, \ldots, e_i\}$.
- **(a)** i^* : smallest *i* such that G_i has a dominating set of size $k \leftarrow \text{HARD}$
- $\ell(e_{i^*})$: radius of optimal *k*-center solution.

Metric *k*-center: positive integer *k* and complete graph *G* on *V* with length $\ell(uv) = d(u, v)$ for each edge *uv*.

Idea for an algorithm:

- Sort edges of G by length: $\ell(e_1) \leq \cdots \leq \ell(e_m)$.
- **2** Threshold graph G_i : $G[E_i]$ where $E_i := \{e_1, \ldots, e_i\}$.
- *i**: smallest *i* such that G_i has a dominating set of size $k \leftarrow HARD$
- $\ell(e_{i^*})$: radius of optimal k-center solution.

 H^2 : the square of H (add edges between vertices at distance 2 in H)

Metric *k*-center: positive integer *k* and complete graph *G* on *V* with length $\ell(uv) = d(u, v)$ for each edge *uv*.

Idea for an algorithm:

- Sort edges of G by length: $\ell(e_1) \leq \cdots \leq \ell(e_m)$.
- **2** Threshold graph G_i : $G[E_i]$ where $E_i := \{e_1, \ldots, e_i\}$.
- *i**: smallest *i* such that G_i has a dominating set of size $k \leftarrow \text{HARD}$
- $\ell(e_{i^*})$: radius of optimal *k*-center solution.

 H^2 : the square of H (add edges between vertices at distance 2 in H)

A maximal independent set in a graph is a dominating set.

Metric *k*-center: positive integer *k* and complete graph *G* on *V* with length $\ell(uv) = d(u, v)$ for each edge *uv*.

Idea for an algorithm:

- Sort edges of G by length: $\ell(e_1) \leq \cdots \leq \ell(e_m)$.
- **2** Threshold graph G_i : $G[E_i]$ where $E_i := \{e_1, \ldots, e_i\}$.
- *i**: smallest *i* such that G_i has a dominating set of size $k \leftarrow HARD$
- $\ell(e_{i^*})$: radius of optimal k-center solution.
- H^2 : the square of H (add edges between vertices at distance 2 in H)
- A maximal independent set in a graph is a dominating set.

A maximal independent set in G_i^2 is a set of centers in G of radius $2\ell(e_i)$.

Algorithm GHS $(k, G, \ell) ightarrow$ Gonzalez '85, Hochbaum and Shmoys '85 **a** $M_0 := V(G)$ i := 0 **a** while $|M_i| > k$ **b** i := i + 1 **c** Let M_i be a maximal independent set on G_i^2 **b** return M_i

Algorithm GHS $(k, G, \ell) ightarrow$ Gonzalez '85, Hochbaum and Shmoys '85 **a** $M_0 := V(G)$ i := 0 **a** while $|M_i| > k$ **b** i := i + 1 **c** Let M_i be a maximal independent set on G_i^2 **b** return M_i

Algorithm GHS $(k, G, \ell) ightarrow$ Gonzalez '85, Hochbaum and Shmoys '85 **a** $M_0 := V(G)$ i := 0 **a** while $|M_i| > k$ **b** i := i + 1 **c** Let M_i be a maximal independent set on G_i^2 **b** return M_i

The radius of M_i is at most $2\ell(e_i)$.

The radius of M_i is at most $2\ell(e_i)$.

Because G_{i^*} has a dominating set of size k, any maximal independent set in $G_{i^*}^2$ has size at most k.
Bottleneck problems: metric k-center

The radius of M_i is at most $2\ell(e_i)$.

Because G_{i^*} has a dominating set of size k, any maximal independent set in $G_{i^*}^2$ has size at most k.

```
So certainly |M_{i^*}| \leq k, thus i \leq i^*.
```

Bottleneck problems: metric k-center

The radius of M_i is at most $2\ell(e_i)$.

Because G_{i^*} has a dominating set of size k, any maximal independent set in $G_{i^*}^2$ has size at most k.

```
So certainly |M_{i^*}| \leq k, thus i \leq i^*.
```

Hence the radius of M_i is at most $2\ell(e_i) \leq 2\ell(e_{i^*}) = 2$ OPT.

Bottleneck problems: metric k-center

Exercise 3:

Is there an α -approximation with $\alpha < 2$ for the metric k-center?

Classical k-median

Given:

- a positive integer k,
- \bullet a set V of elements, and
- a function $d:V imes V
 ightarrow \mathbb{Q}^+$,

Classical k-median

Given:

- a positive integer k,
- a set V of elements, and
- a function $d:V imes V o \mathbb{Q}^+$,

find a set $S \subseteq V$ with |S| = k that ...

Classical k-median

Given:

- a positive integer k,
- a set V of elements, and
- a function $d:V imes V o \mathbb{Q}^+$,

find a set $S \subseteq V$ with |S| = k that minimizes $\sum_{u \in V} \min_{v \in S} d(u, v)$.

Classical k-median

Given:

- a positive integer k,
- a set V of elements, and
- a function $d: V imes V o \mathbb{Q}^+$,

find a set $S \subseteq V$ with |S| = k that minimizes $\sum_{u \in V} \min_{v \in S} d(u, v)$.

There is no α -approximation for constant $\alpha > 1$ unless P = NP.

Cristina G. Fernandes

k-median instance: positive integer k, set V, and distance function d.

k-median instance: positive integer *k*, set *V*, and distance function *d*. Let *S* be a subset of *V* of size *k*. Let $u \in S$ and $v \notin S$.

k-median instance: positive integer k, set V, and distance function d.

Let S be a subset of V of size k. Let $u \in S$ and $v \notin S$.

Pair (u, v) is an improving swap for S if S' = S - u + v has better cost:

$$\sum_{u\in V}\min_{v\in S}d(u,v)>\sum_{u\in V}\min_{v\in S'}d(u,v).$$

k-median instance: positive integer k, set V, and distance function d.

Let S be a subset of V of size k. Let $u \in S$ and $v \notin S$.

Pair (u, v) is an improving swap for S if S' = S - u + v has better cost:

$$\sum_{u\in V}\min_{v\in S}d(u,v)>\sum_{u\in V}\min_{v\in S'}d(u,v).$$

Algorithm AGKMMP (k, V, d)

 \triangleright Arya et al. '01

- let S be an arbitrary set of k elements of V
- 2 while there is an improving swap (u, v) for S

$$S := S - u + v$$

Interpretation of the second secon

This is a 5-approximation!

Let S^* be an optimal solution and $N^*(o)$ be the clients of o in S^*

Let S^* be an optimal solution and $N^*(o)$ be the clients of o in S^* Let S be the output of the algorithm and N(s) be the clients of s in S.

Let S^* be an optimal solution and $N^*(o)$ be the clients of o in S^*

Let S be the output of the algorithm and N(s) be the clients of s in S.


```
s \in S captures o \in S^* if |N^*(o) \cap N(s)| > |N^*(o)|/2.
```

Let S^* be an optimal solution and $N^*(o)$ be the clients of o in S^*

Let S be the output of the algorithm and N(s) be the clients of s in S.

 $s \in S$ captures $o \in S^*$ if $|N^*(o) \cap N(s)| > |N^*(o)|/2$.

Each $o \in S^*$ is captured by at most one element from S.

 $s \in S$ captures $o \in S^*$ if $|N^*(o) \cap N(s)| > |N^*(o)|/2$.

Assume that each $s \in S$ captures exactly one element o from S^* .

 $s \in S$ captures $o \in S^*$ if $|N^*(o) \cap N(s)| > |N^*(o)|/2$.

Assume that each $s \in S$ captures exactly one element o from S^* .

In this case, let us prove that $cost(S) \leq 3 cost(S^*)$.

 $s \in S$ captures $o \in S^*$ if $|N^*(o) \cap N(s)| > |N^*(o)|/2$.

Assume that each $s \in S$ captures exactly one element o from S^* .

In this case, let us prove that $cost(S) \le 3 cost(S^*)$.

Because (s, o) is not an improving swap, $cost(S - s + o) \ge cost(S)$.

$$\cot(S - s + o) \leq ???$$

$$\cot(S - s + o) \leq ???$$

 $cost(S - s + o) \leq cost(S) + ???$

$$\operatorname{cost}(S-s+o) \leq \operatorname{cost}(S) + \sum_{j \in N^*(o)} (o_j - s_j) +$$

$$\operatorname{cost}(S-s+o) \leq \operatorname{cost}(S) + \sum_{j \in N^*(o)} (o_j - s_j) +$$

$$\operatorname{cost}(S-s+o) \leq \operatorname{cost}(S) + \sum_{j \in N^*(o)} (o_j - s_j) +$$

$$\operatorname{cost}(S-s+o) \leq \operatorname{cost}(S) + \sum_{j \in N^*(o)} (o_j - s_j) +$$

$$\cot(S-s+o) \le \cot(S) + \sum_{j \in N^*(o)} (o_j - s_j) +$$

$\operatorname{cost}(S-s+o) \leq \operatorname{cost}(S) + \sum_{j \in N^*(o)} (o_j - s_j) + \sum_{j \in N(s) \setminus N^*(o)} (o_j + o_{\pi(j)} + s_{\pi(j)} - s_j).$

$\operatorname{cost}(S-s+o) \leq \operatorname{cost}(S) + \sum_{j \in N^*(o)} (o_j - s_j) + \sum_{j \in N(s)} (o_j + o_{\pi(j)} + s_{\pi(j)} - s_j).$

$\operatorname{cost}(S-s+o) \leq \operatorname{cost}(S) + \sum_{j \in N^*(o)} (o_j - s_j) + \sum_{j \in N(s)} (o_j + o_{\pi(j)} + s_{\pi(j)} - s_j).$

Permutation π is selected using that $|N^*(o') \cap N(s')| > |N^*(o)|/2$.

$$\operatorname{cost}(S-s+o) \leq \operatorname{cost}(S) + \sum_{j \in N^*(o)} (o_j - s_j) + \sum_{j \in N(s)} (o_j + o_{\pi(j)} + s_{\pi(j)} - s_j).$$

But $cost(S - s + o) \ge cost(S)$, so

$$\sum_{j \in N^*(o)} (o_j - s_j) + \sum_{j \in N(s)} (o_j + o_{\pi(j)} + s_{\pi(j)} - s_j) \ge 0.$$

Cristina G. Fernandes

$$\sum_{j \in N^*(o)} (o_j - s_j) + \sum_{j \in N(s)} (o_j + o_{\pi(j)} + s_{\pi(j)} - s_j) \ge 0$$

Thus, summing over all $s \in S$ and the corresponding $o \in S^*$, we get

 $\left(\cot(S^*) - \cot(S)\right) + \left(\cot(S^*) + \cot(S^*) + \cot(S) - \cot(S)\right) \geq 0$

$$\sum_{j \in N^*(o)} (o_j - s_j) + \sum_{j \in N(s)} (o_j + o_{\pi(j)} + s_{\pi(j)} - s_j) \ge 0$$

Thus, summing over all $s \in S$ and the corresponding $o \in S^*$, we get $(\cot(S^*) - \cot(S)) + (\cot(S^*) + \cot(S^*) + \cot(S) - \cot(S)) > 0$

Therefore $cost(S) \leq 3 cost(S^*)$.

$$\sum_{j \in N^*(o)} (o_j - s_j) + \sum_{j \in N(s)} (o_j + o_{\pi(j)} + s_{\pi(j)} - s_j) \ge 0$$

Thus, summing over all $s \in S$ and the corresponding $o \in S^*$, we get

 $(\cot(S^*) - \cot(S)) + (\cot(S^*) + \cot(S^*) + \cot(S) - \cot(S)) \ge 0$ Therefore $\cot(S) \le 3 \cot(S^*)$.

Without the assumption that each $s \in S$ captures exactly one element o from S^* , by a similar analysis, we can derive that $cost(S) \le 5 cost(S^*)$.

$$\sum_{j \in N^{*}(o)} (o_{j} - s_{j}) + \sum_{j \in N(s)} (o_{j} + o_{\pi(j)} + s_{\pi(j)} - s_{j}) \geq 0$$

Thus, summing over all $s \in S$ and the corresponding $o \in S^*$, we get

 $(\cot(S^*) - \cot(S)) + (\cot(S^*) + \cot(S^*) + \cot(S) - \cot(S)) \ge 0$ Therefore $\cot(S) \le 3 \cot(S^*)$.

Without the assumption that each $s \in S$ captures exactly one element o from S^* , by a similar analysis, we can derive that $cost(S) \le 5 cost(S^*)$.

Exercise 4:

Argue that each $s \in S$ captures at most two elements from S^* and derive that $\sum_{j \in N^*(o)} (o_j - s_j) + 2 \sum_{j \in N(s)} (o_j + o_{\pi(j)} + s_{\pi(j)} - s_j) \ge 0$.

Short break before Part 2

Exercise 1:

Sort the jobs in decreasing order of the processing time before running Graham's algorithm. Can you prove an approximation ratio better than 2 for this algorithm?

Exercise 2:

How does the inapproximability result for k-center apply to metric instances?

Exercise 3:

Is there an α -approximation with $\alpha < 2$ for the metric k-center?

Exercise 4:

Argue that each $s \in S$ captures at most two elements from S^* and derive that $\sum_{j \in N^*(o)} (o_j - s_j) + 2 \sum_{j \in N(s)} (o_j + o_{\pi(j)} + s_{\pi(j)} - s_j) \ge 0$.

Boolean formulas

- vi: boolean variable
- \bar{v}_i : negation of the boolean variable v_i
- literal: a variable or its negation

clause: disjunction (OR) of literals, as for instance $v_1 \lor \bar{v}_2 \lor v_3$

Boolean formulas

- vi: boolean variable
- \bar{v}_i : negation of the boolean variable v_i
- literal: a variable or its negation

clause: disjunction (OR) of literals, as for instance $v_1 \lor \bar{v}_2 \lor v_3$ (literals in the same clause correspond to distinct variables)

Boolean formulas

- vi: boolean variable
- \bar{v}_i : negation of the boolean variable v_i
- literal: a variable or its negation

clause: disjunction (OR) of literals, as for instance $v_1 \lor \overline{v}_2 \lor v_3$ (literals in the same clause correspond to distinct variables)

Boolean formula in conjunctive normal form (CNF):

 $\phi = (\mathbf{v}_1 \vee \bar{\mathbf{v}}_2 \vee \mathbf{v}_3)(\bar{\mathbf{v}}_1 \vee \bar{\mathbf{v}}_3)(\mathbf{v}_2 \vee \mathbf{v}_3 \vee \bar{\mathbf{v}}_4 \vee \mathbf{v}_5)(\bar{\mathbf{v}}_1 \vee \mathbf{v}_4 \vee \bar{\mathbf{v}}_5)$

Boolean formulas

- v_i: boolean variable
- \bar{v}_i : negation of the boolean variable v_i
- literal: a variable or its negation

clause: disjunction (OR) of literals, as for instance $v_1 \lor \bar{v}_2 \lor v_3$ (literals in the same clause correspond to distinct variables)

Boolean formula in conjunctive normal form (CNF):

 $\phi = (\mathbf{v}_1 \vee \overline{\mathbf{v}}_2 \vee \mathbf{v}_3)(\overline{\mathbf{v}}_1 \vee \overline{\mathbf{v}}_3)(\mathbf{v}_2 \vee \mathbf{v}_3 \vee \overline{\mathbf{v}}_4 \vee \mathbf{v}_5)(\overline{\mathbf{v}}_1 \vee \mathbf{v}_4 \vee \overline{\mathbf{v}}_5)$

assignment for ϕ : function that assigns **True** or **False** to each variable in ϕ

To decide whether there exists an assignment that satisfies a CNF formula is NP-complete.

MAX SAT Problem

Given a CNF formula $\phi,$ find an assignment for ϕ that maximizes the number of satisfied clauses.

MAX SAT Problem

Given a CNF formula ϕ , find an assignment for ϕ that maximizes the number of satisfied clauses.

Probabilistic algorithm:

For each *i*, with probability 1/2 each, choose to set $v_i =$ **True** or to set $v_i =$ **False**

MAX SAT Problem

Given a CNF formula ϕ , find an assignment for ϕ that maximizes the number of satisfied clauses.

Probabilistic algorithm:

For each *i*, with probability 1/2 each, choose to set $v_i =$ **True** or to set $v_i =$ **False**

A k-clause is a clause with exactly k literals.

What is the probability that a k-clause C ends up satisfied?

MAX SAT Problem

Given a CNF formula ϕ , find an assignment for ϕ that maximizes the number of satisfied clauses.

Probabilistic algorithm:

For each *i*, with probability 1/2 each, choose to set $v_i =$ **True** or to set $v_i =$ **False**

A k-clause is a clause with exactly k literals.

What is the probability that a k-clause C ends up satisfied?

$$\Pr[C \text{ is satisfied}] = 1 - \frac{1}{2^k}$$

Probabilistic $\frac{1}{2}$ -approximation for SAT

RAND(p): returns 1 with probability p or 0 with probability 1 - p.

Probabilistic $\frac{1}{2}$ -approximation for SAT

RAND(p): returns 1 with probability p or 0 with probability 1 - p.

As each clause in ϕ has at least one literal, each clause is satisfied with probability at least 1/2.

Probabilistic $\frac{1}{2}$ -approximation for SAT

RAND(p): returns 1 with probability p or 0 with probability 1 - p.

As each clause in ϕ has at least one literal, each clause is satisfied with probability at least 1/2.

Let *m* be the number of clauses in ϕ .

Then clearly $\operatorname{Exp}[\operatorname{cost}(x)] \ge m/2 \ge \operatorname{OPT}(\phi)/2.$

One more exercise

RAND(p): returns 1 with probability p and 0 with probability 1 - p.

Exercise 5:

Prove that the proposed algorithm is an α -approximation for some α , or argue that the algorithm is not an approximation algorithm.

Cristina G. Fernandes

Approximation Algorithms

Integer programming formulations

For a CNF formula ϕ , V is its set of variables.

For a clause C of ϕ , $C_0 := \{v_i : \overline{v}_i \in C\}$ and $C_1 := \{v_i : v_i \in C\}$.

 C_0 are the negative variables in C and C_1 are the positive variables in C.

Integer programming formulations

- For a CNF formula ϕ ,
 - V is its set of variables.
- For a clause C of ϕ , $C_0 := \{v_i : \overline{v}_i \in C\}$ and $C_1 := \{v_i : v_i \in C\}$.

 C_0 are the negative variables in C and C_1 are the positive variables in C.

Consider the following integer linear program (IP) built from ϕ :

maximize $\sum_{C \in \phi} z_C$ subject to

$$\begin{array}{rcl} \sum_{\nu \in C_0} (1 - x_{\nu}) + \sum_{\nu \in C_1} x_{\nu} & \geq & z_C & \text{ for every } C \in \phi \\ & z_C & \in & \{0,1\} & \text{ for every } C \in \phi \\ & x_{\nu} & \in & \{0,1\} & \text{ for every } \nu \in V \end{array}$$

Integer programming formulations

- For a CNF formula ϕ ,
 - V is its set of variables.
- For a clause C of ϕ , $C_0 := \{v_i : \overline{v}_i \in C\}$ and $C_1 := \{v_i : v_i \in C\}$.

 C_0 are the negative variables in C and C_1 are the positive variables in C.

Consider the following integer linear program (IP) built from ϕ :

maximize $\sum_{C \in \phi} z_C$ subject to

$$\begin{array}{rcl} \sum_{\nu \in C_0} (1 - x_{\nu}) + \sum_{\nu \in C_1} x_{\nu} & \geq & z_C & \text{ for every } C \in \phi \\ & z_C & \in & \{0, 1\} & \text{ for every } C \in \phi \\ & x_{\nu} & \in & \{0, 1\} & \text{ for every } \nu \in V \end{array}$$

Solving this IP is equivalent to finding $OPT(\phi)$.

The linear relaxation of the IP built from ϕ is:

maximize $\sum_{C \in \phi} z_C$ subject to

$$\begin{array}{rcl} \sum_{v \in C_0} (1 - x_v) + \sum_{v \in C_1} x_v & \geq & z_C & \text{for every } C \in \phi \\ & 0 & \leq & z_C & \leq & 1 & \text{for every } C \in \phi \\ & 0 & \leq & x_v & \leq & 1 & \text{for every } v \in V \end{array}$$

The linear relaxation of the IP built from ϕ is:

maximize $\sum_{C \in \phi} z_C$ subject to

$$\begin{array}{rcl} \sum_{v \in C_0} (1 - x_v) + \sum_{v \in C_1} x_v & \geq & z_C & \text{for every } C \in \phi \\ & 0 & \leq & z_C & \leq & 1 & \text{for every } C \in \phi \\ & 0 & \leq & x_v & \leq & 1 & \text{for every } v \in V \end{array}$$

There are polynomial-time algorithms that solve linear programs.

The linear relaxation of the IP built from ϕ is:

maximize $\sum_{C \in \phi} z_C$ subject to

$$\begin{array}{rcl} \sum_{v \in C_0} (1 - x_v) + \sum_{v \in C_1} x_v & \geq & z_C & \text{for every } C \in \phi \\ & 0 & \leq & z_C & \leq & 1 & \text{for every } C \in \phi \\ & 0 & \leq & x_v & \leq & 1 & \text{for every } v \in V \end{array}$$

There are polynomial-time algorithms that solve linear programs.

If z^* is the optimum value of this linear program (LP), then $OPT(\phi) \le z^*$.

The linear relaxation of the IP built from ϕ is:

maximize $\sum_{C \in \phi} z_C$ subject to

$$\begin{array}{rcl} \sum_{v \in C_0} (1 - x_v) + \sum_{v \in C_1} x_v & \geq & z_C & \text{for every } C \in \phi \\ & 0 & \leq & z_C & \leq & 1 & \text{for every } C \in \phi \\ & 0 & \leq & x_v & \leq & 1 & \text{for every } v \in V \end{array}$$

There are polynomial-time algorithms that solve linear programs.

If z^* is the optimum value of this linear program (LP), then $OPT(\phi) \leq z^*$.

Idea

Use the value of $x_v \in [0,1]$ to decide how to set v to **True** or **False**.

Probabilistic rounding

maximize
$$\sum_{C \in \phi} z_C$$

subject to

$$\begin{array}{rcl} \sum_{v \in C_0} (1 - x_v) + \sum_{v \in C_1} x_v & \geq & z_C & \text{for every } C \in \phi \\ & 0 & \leq & z_C & \leq & 1 & \text{for every } C \in \phi \\ & 0 & \leq & x_v & \leq & 1 & \text{for every } v \in V \end{array}$$

Probabilistic rounding

maximize
$$\sum_{C \in \phi} z_C$$

subject to

$$\begin{array}{rcl} \sum_{v \in C_0} (1 - x_v) + \sum_{v \in C_1} x_v & \geq & z_C & \text{for every } C \in \phi \\ & 0 & \leq & z_C & \leq & 1 & \text{for every } C \in \phi \\ & 0 & \leq & x_v & \leq & 1 & \text{for every } v \in V \end{array}$$

Indeed, \dot{x} satisfies at least 0.63 $\sum_{C \in \phi} \hat{z}_C \ge 0.63 \operatorname{OPT}(\phi)$ clauses.

For each clause C, let t be the number of literals in C.

Consider the binary random variable Z_C that is 1 if C is satisfied by \dot{x} and 0 otherwise.

For each clause C, let t be the number of literals in C.

Consider the binary random variable Z_C that is 1 if C is satisfied by \dot{x} and 0 otherwise.

$$\operatorname{Exp}[Z_{C}] = \operatorname{Pr}[Z_{C} = 1] = 1 - \prod_{v \in C_{0}} \hat{x}_{v} \prod_{v \in C_{1}} (1 - \hat{x}_{v})$$

For each clause C, let t be the number of literals in C.

Consider the binary random variable Z_C that is 1 if C is satisfied by \dot{x} and 0 otherwise.

$$\operatorname{Exp}[Z_{C}] = \operatorname{Pr}[Z_{C} = 1] = 1 - \prod_{v \in C_{0}} \hat{x}_{v} \prod_{v \in C_{1}} (1 - \hat{x}_{v})$$

$$(\prod_{\nu \in C_0} \hat{x}_{\nu} \prod_{\nu \in C_1} (1 - \hat{x}_{\nu}))^{1/t} \leq \frac{\sum_{\nu \in C_0} \hat{x}_{\nu} + \sum_{\nu \in C_1} (1 - \hat{x}_{\nu})}{t}$$

For each clause C, let t be the number of literals in C.

Consider the binary random variable Z_C that is 1 if C is satisfied by \dot{x} and 0 otherwise.

$$\operatorname{Exp}[Z_{C}] = \Pr[Z_{C} = 1] = 1 - \prod_{v \in C_{0}} \hat{x}_{v} \prod_{v \in C_{1}} (1 - \hat{x}_{v})$$

$$\begin{split} (\prod_{\nu \in \mathcal{C}_0} \hat{x}_{\nu} \prod_{\nu \in \mathcal{C}_1} (1 - \hat{x}_{\nu}))^{1/t} &\leq \quad \frac{\sum_{\nu \in \mathcal{C}_0} \hat{x}_{\nu} + \sum_{\nu \in \mathcal{C}_1} (1 - \hat{x}_{\nu})}{t} \\ &= \quad \frac{(|\mathcal{C}_0| - \sum_{\nu \in \mathcal{C}_0} (1 - \hat{x}_{\nu})) + (|\mathcal{C}_1| - \sum_{\nu \in \mathcal{C}_1} \hat{x}_{\nu})}{t} \end{split}$$

For each clause C, let t be the number of literals in C.

Consider the binary random variable Z_C that is 1 if C is satisfied by \dot{x} and 0 otherwise.

$$\operatorname{Exp}[Z_{C}] = \Pr[Z_{C} = 1] = 1 - \prod_{v \in C_{0}} \hat{x}_{v} \prod_{v \in C_{1}} (1 - \hat{x}_{v})$$

$$\begin{split} (\prod_{\nu \in C_0} \hat{x}_{\nu} \prod_{\nu \in C_1} (1 - \hat{x}_{\nu}))^{1/t} &\leq \frac{\sum_{\nu \in C_0} \hat{x}_{\nu} + \sum_{\nu \in C_1} (1 - \hat{x}_{\nu})}{t} \\ &= \frac{(|C_0| - \sum_{\nu \in C_0} (1 - \hat{x}_{\nu})) + (|C_1| - \sum_{\nu \in C_1} \hat{x}_{\nu})}{t} \\ &= \frac{t - \sum_{\nu \in C_0} (1 - \hat{x}_{\nu}) - \sum_{\nu \in C_1} \hat{x}_{\nu}}{t} \end{split}$$

For each clause C, let t be the number of literals in C.

Consider the binary random variable Z_C that is 1 if C is satisfied by \dot{x} and 0 otherwise.

$$\operatorname{Exp}[Z_{C}] = \Pr[Z_{C} = 1] = 1 - \prod_{v \in C_{0}} \hat{x}_{v} \prod_{v \in C_{1}} (1 - \hat{x}_{v})$$

$$\begin{split} (\prod_{\nu \in C_0} \hat{x}_{\nu} \prod_{\nu \in C_1} (1 - \hat{x}_{\nu}))^{1/t} &\leq \frac{\sum_{\nu \in C_0} \hat{x}_{\nu} + \sum_{\nu \in C_1} (1 - \hat{x}_{\nu})}{t} \\ &= \frac{(|C_0| - \sum_{\nu \in C_0} (1 - \hat{x}_{\nu})) + (|C_1| - \sum_{\nu \in C_1} \hat{x}_{\nu})}{t} \\ &= \frac{t - \sum_{\nu \in C_0} (1 - \hat{x}_{\nu}) - \sum_{\nu \in C_1} \hat{x}_{\nu}}{t} \end{split}$$

For each clause C, let t be the number of literals in C.

Consider the binary random variable Z_C that is 1 if C is satisfied by \dot{x} and 0 otherwise.

$$Exp[Z_C] = Pr[Z_C = 1] = 1 - \prod_{v \in C_0} \hat{x}_v \prod_{v \in C_1} (1 - \hat{x}_v)$$

$$egin{array}{rll} (\prod_{v\in C_0} \hat{x}_v \prod_{v\in C_1} (1-\hat{x}_v))^{1/t} &\leq & rac{\sum_{v\in C_0} \hat{x}_v + \sum_{v\in C_1} (1-\hat{x}_v)}{t} \ &= & rac{t - \sum_{v\in C_0} (1-\hat{x}_v) - \sum_{v\in C_1} \hat{x}_v}{t} \ &\leq & rac{t - \hat{z}_C}{t}. \end{array}$$

For each clause C, let t be the number of literals in C.

Consider the binary random variable Z_C that is 1 if C is satisfied by \dot{x} and 0 otherwise.

$$\operatorname{Exp}[Z_{C}] = \Pr[Z_{C} = 1] = 1 - \prod_{v \in C_{0}} \hat{x}_{v} \prod_{v \in C_{1}} (1 - \hat{x}_{v})$$

For non-negative numbers,

$$(\prod_{\nu \in C_0} \hat{x}_{\nu} \prod_{\nu \in C_1} (1 - \hat{x}_{\nu}))^{1/t} \le \frac{t - \hat{z}_C}{t}$$

Hence

$$\operatorname{Exp}[Z_C] \geq 1 - (\frac{t - \hat{z}_C}{t})^t.$$

For each clause C with t literals, let Z_C be 1 if C is satisfied by \dot{x} and 0 otherwise.

$$egin{array}{rcl} \operatorname{Exp}[Z_C] &\geq & 1-(rac{t-\hat{z}_C}{t})^t \ &= & 1-(1-rac{\hat{z}_C}{t})^t \end{array}$$
For each clause C with t literals, let Z_C be 1 if C is satisfied by \dot{x} and 0 otherwise.

$$egin{array}{rcl} {
m Exp}[Z_{C}] &\geq & 1-(rac{t-\hat{z}_{C}}{t})^{t} \ &= & 1-(1-rac{\hat{z}_{C}}{t})^{t} \ &\geq & (1-(1-rac{1}{t})^{t})\hat{z}_{C} \end{array}$$

because $f(z) = 1 - (1 - \frac{z}{t})^t$ is concave in the interval [0, 1], and f(0) = 0, so $f(z) \ge z f(1)$, which implies the last inequality.

For each clause *C* with *t* literals, let Z_C be 1 if *C* is satisfied by \dot{x} and 0 otherwise.

$$\begin{aligned} & \exp[Z_C] \geq 1 - (\frac{t - \hat{z}_C}{t})^t \\ & = 1 - (1 - \frac{\hat{z}_C}{t})^t \\ & \geq (1 - (1 - \frac{1}{t})^t) \hat{z}_C \\ & > (1 - \frac{1}{e}) \hat{z}_C \\ & > 0.63 \, \hat{z}_C \end{aligned}$$

because $(1-\frac{1}{t})^t < \frac{1}{e}$ for every $t \ge 1$.

Euler's number e = 2.71828, the base of the natural logarithm.

For each clause C with t literals, let Z_C be 1 if C is satisfied by \dot{x} and 0 otherwise.

Note that $\sum_{C \in \phi} Z_C$ is the number of clauses satisfied by the assignment \dot{x} produced by the GW algorithm.

For each clause C with t literals, let Z_C be 1 if C is satisfied by \dot{x} and 0 otherwise.

Note that $\sum_{C \in \phi} Z_C$ is the number of clauses satisfied by the assignment \dot{x} produced by the GW algorithm.

As, for every $C \in \phi$,

$$\operatorname{Exp}[Z_C] > 0.63 \, \hat{z}_C,$$

then we deduce that

$$\operatorname{Exp}[\sum_{C \in \phi} Z_C] > 0.63 \sum_{C \in \phi} \hat{z}_C \geq 0.63 \operatorname{OPT}(\phi).$$

For each clause C with t literals, let Z_C be 1 if C is satisfied by \dot{x} and 0 otherwise.

Note that $\sum_{C \in \phi} Z_C$ is the number of clauses satisfied by the assignment \dot{x} produced by the GW algorithm.

As, for every $C \in \phi$,

$$\operatorname{Exp}[Z_C] > 0.63 \, \hat{z}_C,$$

then we deduce that

$$\operatorname{Exp}[\sum_{C \in \phi} Z_C] > 0.63 \sum_{C \in \phi} \hat{z}_C \geq 0.63 \operatorname{OPT}(\phi).$$

The GW algorithm is a 0.63-approximation for MAXSAT.

If all clauses have k literals, then Johnson's algorithm is a $(1 - \frac{1}{2^k})$ -approximation, which improves as k grows.

If all clauses have k literals, then Johnson's algorithm is a $(1 - \frac{1}{2^k})$ -approximation, which improves as k grows.

If all clauses have k literals, then GW algorithm is a $(1 - (1 - \frac{1}{k})^k)$ -approximation, which gets worse as k grows.

If all clauses have k literals, then Johnson's algorithm is a $(1 - \frac{1}{2^k})$ -approximation, which improves as k grows.

If all clauses have k literals, then GW algorithm is a $(1 - (1 - \frac{1}{k})^k)$ -approximation, which gets worse as k grows.

So one of the algorithms works better on formulas whose clauses are long, and the other on formulas whose clauses are short.

Idea

Run both algorithms and output the best solution.

Algorithm Combined (ϕ)

- $I x_J := \text{JOHNSON}(\phi)$
- $a x_{GW} := GW(\phi)$
- **③** let s_J be the number of clauses of ϕ satisfied by x_J
- **(**) let s_{GW} be the number of clauses of ϕ satisfied by x_{GW}
- if $s_J \ge s_{GW}$ then return x_J

 \circ else return x_{GW}

 \triangleright gives a 0.75-approximation

▷ Goemans and Williamson '94

 X_J : number of clauses satisfied by Johnson's algorithm.

 X_{GW} : number of clauses satisfied by GW algorithm.

 X_J : number of clauses satisfied by Johnson's algorithm.

 X_{GW} : number of clauses satisfied by GW algorithm.

$$\operatorname{Exp}[\max\{X_J, X_{GW}\}] \geq \operatorname{Exp}[\frac{X_J + X_{GW}}{2}]$$

 X_J : number of clauses satisfied by Johnson's algorithm.

 X_{GW} : number of clauses satisfied by GW algorithm.

$$\begin{aligned} & \operatorname{Exp}[\max\{X_J, X_{GW}\}] \geq & \operatorname{Exp}[\frac{X_J + X_{GW}}{2}] \\ & \geq & \frac{1}{2} \sum_k \sum_{C \in \mathcal{C}_k} \left((1 - \frac{1}{2^k}) + (1 - (1 - \frac{1}{k})^k) \hat{z}_C \right) \\ & \geq & \frac{1}{2} \sum_k \sum_{C \in \mathcal{C}_k} (1 - \frac{1}{2^k} + 1 - (1 - \frac{1}{k})^k) \hat{z}_C \end{aligned}$$

 X_J : number of clauses satisfied by Johnson's algorithm.

 X_{GW} : number of clauses satisfied by GW algorithm.

$$\begin{aligned} & \operatorname{Exp}[\max\{X_J, X_{GW}\}] \geq & \operatorname{Exp}[\frac{X_J + X_{GW}}{2}] \\ & \geq & \frac{1}{2} \sum_k \sum_{C \in \mathcal{C}_k} \left((1 - \frac{1}{2^k}) + (1 - (1 - \frac{1}{k})^k) \hat{z}_C \right) \\ & \geq & \frac{1}{2} \sum_k \sum_{C \in \mathcal{C}_k} \left(1 - \frac{1}{2^k} + 1 - (1 - \frac{1}{k})^k \right) \hat{z}_C \\ & \geq & \frac{1}{2} \sum_k \sum_{C \in \mathcal{C}_k} \frac{3}{2} \hat{z}_C \end{aligned}$$

 X_J : number of clauses satisfied by Johnson's algorithm.

 X_{GW} : number of clauses satisfied by GW algorithm.

$$\begin{aligned} & \operatorname{Exp}[\max\{X_{J}, X_{GW}\}] \geq \operatorname{Exp}[\frac{X_{J} + X_{GW}}{2}] \\ & \geq \frac{1}{2} \sum_{k} \sum_{C \in \mathcal{C}_{k}} \left((1 - \frac{1}{2^{k}}) + (1 - (1 - \frac{1}{k})^{k}) \hat{z}_{C} \right) \\ & \geq \frac{1}{2} \sum_{k} \sum_{C \in \mathcal{C}_{k}} (1 - \frac{1}{2^{k}} + 1 - (1 - \frac{1}{k})^{k}) \hat{z}_{C} \\ & \geq \frac{1}{2} \sum_{k} \sum_{C \in \mathcal{C}_{k}} \frac{3}{2} \hat{z}_{C} \\ & = \frac{3}{4} \operatorname{OPT}(\phi) \end{aligned}$$

Conclusions

If you like algorithms and the use of smart ideas to design beautiful and efficient algorithms, join the force to study approximation algorithms!

Two books on the subject

Approximation Algorithms, by Vazirani The Design of Approximation Algorithms, by Williamson and Shmoys

THANK YOU!!!