
Approximation Algorithms

Cristina G. Fernandes
University of São Paulo, Brazil

Guanajuato, Nov 7th, 2022

LATIN 2022
15th Latin American Theoretical Informatics Symposium

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 1 / 58

Outline of the tutorial

Part 1:
Approximation algorithms: an example and definitions
Clustering problems: k-center and k-median
Bottleneck problems: 2-approximation for k-center
Local search: (3 + ε)-approximation for k-median

Part 2:
Probabilistic strategies: 0.5-approximation for MaxSAT
Linear programming: 0.63-approximation for the MaxSAT
Mixed strategies: 0.75-approximation for the MaxSAT
Closing remarks

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 2 / 58

Outline of the tutorial

Part 1:
Approximation algorithms: an example and definitions
Clustering problems: k-center and k-median
Bottleneck problems: 2-approximation for k-center
Local search: (3 + ε)-approximation for k-median

Part 2:
Probabilistic strategies: 0.5-approximation for MaxSAT
Linear programming: 0.63-approximation for the MaxSAT
Mixed strategies: 0.75-approximation for the MaxSAT
Closing remarks

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 2 / 58

Scheduling in identical machines

Given: m machines
n jobs
processing time t i of job i (i = 1, . . . , n)

jobs machines

a scheduling is a partition {M1, . . . ,Mm} of {1, . . . , n}.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 3 / 58

Scheduling in identical machines

Given: m machines
n jobs
processing time t i of job i (i = 1, . . . , n)

jobs machines

a scheduling is a partition {M1, . . . ,Mm} of {1, . . . , n}.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 3 / 58

Example 1

m = 3 and n = 7

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

partition {{1, 4, 7}, {2, 5}, {3, 6}} ⇒ makespan = 13

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 4 / 58

Example 1

m = 3 and n = 7

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

partition {{1, 4, 7}, {2, 5}, {3, 6}} ⇒ makespan = 13

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 4 / 58

Example 1

m = 3 and n = 7

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 1413

partition {{1, 4, 7}, {2, 5}, {3, 6}} ⇒ makespan = 13

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 4 / 58

Example 2

m = 3 and n = 7

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

partition {{1, 2, 3}, {4, 5}, {6, 7}} ⇒ makespan = 12

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 5 / 58

Problem

Find a scheduling with minimum makespan.

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

partition {{1, 4}, {2, 3}, {5, 6, 7}} ⇒ makespan = 9

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 6 / 58

Hardness

Scheduling on two machines: given n and t,
find a scheduling for two machines with minimum makespan.

jobs machines

Partition: Given a set S numbers,
decide if there is a subset X ⊆ S such that

∑
s∈X s =

∑
s∈S\X s.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 7 / 58

Hardness

Scheduling on two machines: given n and t,
find a scheduling for two machines with minimum makespan.

jobs machines

Partition: Given a set S numbers,
decide if there is a subset X ⊆ S such that

∑
s∈X s =

∑
s∈S\X s.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 7 / 58

Hardness

Scheduling on two machines: given n and t,
find a scheduling for two machines with minimum makespan.

jobs machines

Even this particular case is NP-hard, that is,
if there is a polynomial-time algorithm for this case, then P = NP.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 8 / 58

Graham’s algorithm

Assign each job, one by one, to the first available machine.

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Graham’s algorithm is polynomial.

How bad can the makespan be?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 9 / 58

Graham’s algorithm

Assign each job, one by one, to the first available machine.

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Graham’s algorithm is polynomial.

How bad can the makespan be?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 9 / 58

Graham’s algorithm

Assign each job, one by one, to the first available machine.

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Graham’s algorithm is polynomial.

How bad can the makespan be?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 9 / 58

Graham’s algorithm

Assign each job, one by one, to the first available machine.

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Graham’s algorithm is polynomial.

How bad can the makespan be?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 9 / 58

Graham’s algorithm

Assign each job, one by one, to the first available machine.

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Graham’s algorithm is polynomial.

How bad can the makespan be?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 9 / 58

Graham’s algorithm

Assign each job, one by one, to the first available machine.

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Graham’s algorithm is polynomial.

How bad can the makespan be?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 9 / 58

Graham’s algorithm

Assign each job, one by one, to the first available machine.

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Graham’s algorithm is polynomial.

How bad can the makespan be?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 9 / 58

Graham’s algorithm

Assign each job, one by one, to the first available machine.

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Graham’s algorithm is polynomial.

How bad can the makespan be?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 9 / 58

Graham’s algorithm

Assign each job, one by one, to the first available machine.

t1
3

t2
2

t3
7

t4
5

t5
1

t6
6

t7
2

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Graham’s algorithm is polynomial.

How bad can the makespan be?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 9 / 58

Bounds on OPT

OPT = minimum makespan

Largest processing time of a job:

OPT ≥ max{t1, t2, . . . , tn}

Balanced distribution:

OPT ≥ t1 + t2 + · · ·+ tn
m

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 10 / 58

Bounds on OPT

OPT = minimum makespan

Largest processing time of a job:

OPT ≥ max{t1, t2, . . . , tn}

Balanced distribution:

OPT ≥ t1 + t2 + · · ·+ tn
m

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 10 / 58

Bounds on OPT

OPT = minimum makespan

Largest processing time of a job:

OPT ≥ max{t1, t2, . . . , tn}

Balanced distribution:

OPT ≥ t1 + t2 + · · ·+ tn
m

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 10 / 58

Makespan of Graham’s scheduling

TG : makespan of the algorithm

job i : job that finishes at time TG

time T : time previous to the starting time of job i

M1
...

Mj
...

Mm

1 2 3 4 . . . T TG

T ·m < t1 + · · ·+ tn ⇒ T <
t1 + · · ·+ tn

m ≤ OPT

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 11 / 58

Makespan of Graham’s scheduling

TG : makespan of the algorithm

job i : job that finishes at time TG

time T : time previous to the starting time of job i

M1
...

Mj
...

Mm

1 2 3 4 . . . T TG

T ·m < t1 + · · ·+ tn ⇒ T <
t1 + · · ·+ tn

m ≤ OPT

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 11 / 58

Quality of Graham’s scheduling

M1
...

Mj
...

Mm

1 2 3 4 . . . T TG

TG = T + ti

< OPT + max{t1, . . , tn}
≤ OPT + OPT
= 2OPT

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 12 / 58

Approximation algorithm

Context:
Π: optimization problem (minimization)
cost(S, I): cost of the feasible solution S for instance I of Π
OPT(I): minimum cost of a feasible solution for instance I of Π

Algorithm for Π:
given any instance I for Π, produces a feasible solution for I.

A(I): solution produced by algorithm A on instance I

Approximation algorithm
if A is polynomial and there exists a number α ≥ 1 such that

cost(A(I), I) ≤ αOPT(I) for every instance I of Π,
then A is an α-approximation.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 13 / 58

Approximation algorithm

Context:
Π: optimization problem (minimization)
cost(S, I): cost of the feasible solution S for instance I of Π
OPT(I): minimum cost of a feasible solution for instance I of Π

Algorithm for Π:
given any instance I for Π, produces a feasible solution for I.

A(I): solution produced by algorithm A on instance I

Approximation algorithm
if A is polynomial and there exists a number α ≥ 1 such that

cost(A(I), I) ≤ αOPT(I) for every instance I of Π,
then A is an α-approximation.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 13 / 58

Approximation algorithm

Context:
Π: optimization problem (minimization)
cost(S, I): cost of the feasible solution S for instance I of Π
OPT(I): minimum cost of a feasible solution for instance I of Π

Algorithm for Π:
given any instance I for Π, produces a feasible solution for I.

A(I): solution produced by algorithm A on instance I

Approximation algorithm
if A is polynomial and there exists a number α ≥ 1 such that

cost(A(I), I) ≤ αOPT(I) for every instance I of Π,
then A is an α-approximation.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 13 / 58

Graham’s algorithm
Input: positive integers m and n, and an array t[1 . . n]
Output: a scheduling of {1, . . . , n} in m machines.

Algorithm Graham (m, n, t)
1 for j := 1 to m do
2 M j := ∅
3 Tj := 0 B available instant for machine j
4 for i := 1 to n do
5 let k be such that Tk is minimum
6 Mk := Mk ∪ {i} Tk := Tk + t i
7 return {M1, . . . ,Mm}

Graham’s algorithm is a 2-approximation.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 14 / 58

Graham’s algorithm
Input: positive integers m and n, and an array t[1 . . n]
Output: a scheduling of {1, . . . , n} in m machines.

Algorithm Graham (m, n, t)
1 for j := 1 to m do
2 M j := ∅
3 Tj := 0 B available instant for machine j
4 for i := 1 to n do
5 let k be such that Tk is minimum
6 Mk := Mk ∪ {i} Tk := Tk + t i
7 return {M1, . . . ,Mm}

Exercise 1:
What if we schedule the jobs in decreasing order of the processing time?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 15 / 58

Clustering problems

Classical k-center
Given:

a positive integer k,
a set V of elements, and
a function d : V × V → Q+,

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 16 / 58

Clustering problems

Classical k-center
Given:

a positive integer k,
a set V of elements, and
a function d : V × V → Q+,

find a set S ⊆ V with |S| = k that . . .

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 16 / 58

Clustering problems

Classical k-center
Given:

a positive integer k,
a set V of elements, and
a function d : V × V → Q+,

find a set S ⊆ V with |S| = k that minimizes maxu∈V minv∈S d(u, v).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 16 / 58

Clustering problems

Classical k-center
Given:

a positive integer k,
a set V of elements, and
a function d : V × V → Q+,

find a set S ⊆ V with |S| = k that minimizes maxu∈V minv∈S d(u, v).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 16 / 58

Hardness

Graph G

Dominating set: set S of vertices of G such that
each vertex of G is in S or has a neighbor in S.

Reduction to a k-center instance: take the same k, V = V (G) and
d(x , y) = 1 if x and y are adjacent in G , and d(x , y) = M otherwise.

Theorem
There is a dominating set of size k in G if and only if
there is a k-center solution of radius 1 for the instance (k,V , d).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 17 / 58

Hardness

Graph G

Dominating set: set S of vertices of G such that
each vertex of G is in S or has a neighbor in S.

Reduction to a k-center instance: take the same k, V = V (G) and
d(x , y) = 1 if x and y are adjacent in G , and d(x , y) = M otherwise.

Theorem
There is a dominating set of size k in G if and only if
there is a k-center solution of radius 1 for the instance (k,V , d).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 17 / 58

Hardness

Graph G

Dominating set: set S of vertices of G such that
each vertex of G is in S or has a neighbor in S.

Reduction to a k-center instance: take the same k, V = V (G) and
d(x , y) = 1 if x and y are adjacent in G , and d(x , y) = M otherwise.

Theorem
There is a dominating set of size k in G if and only if
there is a k-center solution of radius 1 for the instance (k,V , d).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 17 / 58

Hardness

Graph G

Dominating set: set S of vertices of G such that
each vertex of G is in S or has a neighbor in S.

Reduction to a k-center instance: take the same k, V = V (G) and
d(x , y) = 1 if x and y are adjacent in G , and d(x , y) = M otherwise.

Theorem
There is a dominating set of size k in G if and only if
there is a k-center solution of radius 1 for the instance (k,V , d).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 17 / 58

Inapproximability

Graph G

The k-center instance is V = V (G) and
d(x , y) = 1 if x and y are adjacent in G , and d(x , y) = M otherwise.

Hard even to approximate:

An α-approximation for k-center with α < M solves dominating set.

Theorem
There is no α-approximation for the k-center problem, unless P = NP.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 18 / 58

Inapproximability

Graph G

The k-center instance is V = V (G) and
d(x , y) = 1 if x and y are adjacent in G , and d(x , y) = M otherwise.

Hard even to approximate:

An α-approximation for k-center with α < M solves dominating set.

Theorem
There is no α-approximation for the k-center problem, unless P = NP.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 18 / 58

Too hard to approximate?

What to do?
Restrict attention to specific classes of instances.

A function d : V × V → Q+ is a metric if, for every x , y ,w ∈ V ,
d(x , y) = d(y , x) (symmetry)
d(x , y) ≤ d(x ,w) + d(w , y) (triangle inequality)

Such a function d is called a distance function.

Metric instances
If d is a distance function, then the instance is metric.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 19 / 58

Too hard to approximate?

What to do?
Restrict attention to specific classes of instances.

A function d : V × V → Q+ is a metric if, for every x , y ,w ∈ V ,
d(x , y) = d(y , x) (symmetry)
d(x , y) ≤ d(x ,w) + d(w , y) (triangle inequality)

Such a function d is called a distance function.

Metric instances
If d is a distance function, then the instance is metric.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 19 / 58

Metric instances

Metric instances
If d is a distance function, then the instance is metric.

The k-center instance built from the dominating set instance:
d(x , y) = 1 if x and y are adjacent in G and d(x , y) = M otherwise.

This k-center instance is metric only if M ≤ 2.

Exercise 2:
How does the previous inapproximability result apply to the metric
k-center?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 20 / 58

Metric instances

Metric instances
If d is a distance function, then the instance is metric.

The k-center instance built from the dominating set instance:
d(x , y) = 1 if x and y are adjacent in G and d(x , y) = M otherwise.

This k-center instance is metric only if M ≤ 2.

Exercise 2:
How does the previous inapproximability result apply to the metric
k-center?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 20 / 58

Bottleneck problems

Optimal value is the length of an edge

We can “guess” the optimal value

Consider the corresponding threshold graph

Approximately solve the unweighted version of the problem, if possible

Example of bottleneck problem: k-center
Instance: positive integer k, set V , and distance function d on V .

G : complete graph on V with length `(uv) = d(u, v) for each edge uv .

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 21 / 58

Bottleneck problems

Optimal value is the length of an edge

We can “guess” the optimal value

Consider the corresponding threshold graph

Approximately solve the unweighted version of the problem, if possible

Example of bottleneck problem: k-center
Instance: positive integer k, set V , and distance function d on V .

G : complete graph on V with length `(uv) = d(u, v) for each edge uv .

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 21 / 58

Bottleneck problems

Optimal value is the length of an edge

We can “guess” the optimal value

Consider the corresponding threshold graph

Approximately solve the unweighted version of the problem, if possible

Example of bottleneck problem: k-center
Instance: positive integer k, set V , and distance function d on V .

G : complete graph on V with length `(uv) = d(u, v) for each edge uv .

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 21 / 58

Bottleneck problems

Optimal value is the length of an edge

We can “guess” the optimal value

Consider the corresponding threshold graph

Approximately solve the unweighted version of the problem, if possible

Example of bottleneck problem: k-center
Instance: positive integer k, set V , and distance function d on V .

G : complete graph on V with length `(uv) = d(u, v) for each edge uv .

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 21 / 58

Bottleneck problems

Optimal value is the length of an edge

We can “guess” the optimal value

Consider the corresponding threshold graph

Approximately solve the unweighted version of the problem, if possible

Example of bottleneck problem: k-center
Instance: positive integer k, set V , and distance function d on V .

G : complete graph on V with length `(uv) = d(u, v) for each edge uv .

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 21 / 58

Bottleneck problems

Optimal value is the length of an edge

We can “guess” the optimal value

Consider the corresponding threshold graph

Approximately solve the unweighted version of the problem, if possible

Example of bottleneck problem: k-center
Instance: positive integer k, set V , and distance function d on V .

G : complete graph on V with length `(uv) = d(u, v) for each edge uv .

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 21 / 58

Bottleneck problems

Metric k-center: positive integer k and
complete graph G on V with length `(uv) = d(u, v) for each edge uv .

Idea for an algorithm:

1 Sort edges of G by length: `(e1) ≤ · · · ≤ `(em).

2 Threshold graph Gi : G [Ei] where Ei := {e1, . . . , ei}.

3 i∗: smallest i such that Gi has a dominating set of size k.

4 `(ei∗): radius of optimal k-center solution.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 22 / 58

Bottleneck problems

Metric k-center: positive integer k and
complete graph G on V with length `(uv) = d(u, v) for each edge uv .

Idea for an algorithm:

1 Sort edges of G by length: `(e1) ≤ · · · ≤ `(em).

2 Threshold graph Gi : G [Ei] where Ei := {e1, . . . , ei}.

3 i∗: smallest i such that Gi has a dominating set of size k.

4 `(ei∗): radius of optimal k-center solution.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 22 / 58

Bottleneck problems

Metric k-center: positive integer k and
complete graph G on V with length `(uv) = d(u, v) for each edge uv .

Idea for an algorithm:

1 Sort edges of G by length: `(e1) ≤ · · · ≤ `(em).

2 Threshold graph Gi : G [Ei] where Ei := {e1, . . . , ei}.

3 i∗: smallest i such that Gi has a dominating set of size k.

4 `(ei∗): radius of optimal k-center solution.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 22 / 58

Bottleneck problems

Metric k-center: positive integer k and
complete graph G on V with length `(uv) = d(u, v) for each edge uv .

Idea for an algorithm:

1 Sort edges of G by length: `(e1) ≤ · · · ≤ `(em).

2 Threshold graph Gi : G [Ei] where Ei := {e1, . . . , ei}.

3 i∗: smallest i such that Gi has a dominating set of size k.

4 `(ei∗): radius of optimal k-center solution.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 22 / 58

Bottleneck problems

Metric k-center: positive integer k and
complete graph G on V with length `(uv) = d(u, v) for each edge uv .

Idea for an algorithm:

1 Sort edges of G by length: `(e1) ≤ · · · ≤ `(em).

2 Threshold graph Gi : G [Ei] where Ei := {e1, . . . , ei}.

3 i∗: smallest i such that Gi has a dominating set of size k.

4 `(ei∗): radius of optimal k-center solution.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 22 / 58

Bottleneck problems

Metric k-center: positive integer k and
complete graph G on V with length `(uv) = d(u, v) for each edge uv .

Idea for an algorithm:

1 Sort edges of G by length: `(e1) ≤ · · · ≤ `(em).

2 Threshold graph Gi : G [Ei] where Ei := {e1, . . . , ei}.

3 i∗: smallest i such that Gi has a dominating set of size k ← HARD

4 `(ei∗): radius of optimal k-center solution.

H2: the square of H (add edges between vertices at distance 2 in H)

A maximal independent set in a graph is a dominating set.

A maximal independent set in G2
i is a set of centers in G of radius 2 `(ei).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 23 / 58

Bottleneck problems

Metric k-center: positive integer k and
complete graph G on V with length `(uv) = d(u, v) for each edge uv .

Idea for an algorithm:

1 Sort edges of G by length: `(e1) ≤ · · · ≤ `(em).

2 Threshold graph Gi : G [Ei] where Ei := {e1, . . . , ei}.

3 i∗: smallest i such that Gi has a dominating set of size k ← HARD

4 `(ei∗): radius of optimal k-center solution.

H2: the square of H (add edges between vertices at distance 2 in H)

A maximal independent set in a graph is a dominating set.

A maximal independent set in G2
i is a set of centers in G of radius 2 `(ei).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 23 / 58

Bottleneck problems

Metric k-center: positive integer k and
complete graph G on V with length `(uv) = d(u, v) for each edge uv .

Idea for an algorithm:

1 Sort edges of G by length: `(e1) ≤ · · · ≤ `(em).

2 Threshold graph Gi : G [Ei] where Ei := {e1, . . . , ei}.

3 i∗: smallest i such that Gi has a dominating set of size k ← HARD

4 `(ei∗): radius of optimal k-center solution.

H2: the square of H (add edges between vertices at distance 2 in H)

A maximal independent set in a graph is a dominating set.

A maximal independent set in G2
i is a set of centers in G of radius 2 `(ei).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 23 / 58

Bottleneck problems

Metric k-center: positive integer k and
complete graph G on V with length `(uv) = d(u, v) for each edge uv .

Idea for an algorithm:

1 Sort edges of G by length: `(e1) ≤ · · · ≤ `(em).

2 Threshold graph Gi : G [Ei] where Ei := {e1, . . . , ei}.

3 i∗: smallest i such that Gi has a dominating set of size k ← HARD

4 `(ei∗): radius of optimal k-center solution.

H2: the square of H (add edges between vertices at distance 2 in H)

A maximal independent set in a graph is a dominating set.

A maximal independent set in G2
i is a set of centers in G of radius 2 `(ei).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 23 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi

k = 2

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 24 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi

k = 2

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 24 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi

k = 2

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 24 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi

k = 2

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 24 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi

k = 2

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 24 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi

k = 2

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 24 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi

k = 2

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 24 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi

k = 2

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 24 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi

k = 2

The radius of Mi is at most 2 `(ei).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 25 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k B i ≤ i∗
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi B gives a 2-approximation

The radius of Mi is at most 2 `(ei).

Because Gi∗ has a dominating set of size k,
any maximal independent set in G2

i∗ has size at most k.

So certainly |Mi∗ | ≤ k, thus i ≤ i∗.

Hence the radius of Mi is at most 2 `(ei) ≤ 2 `(ei∗) = 2OPT.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 26 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k B i ≤ i∗
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi B gives a 2-approximation

The radius of Mi is at most 2 `(ei).

Because Gi∗ has a dominating set of size k,
any maximal independent set in G2

i∗ has size at most k.

So certainly |Mi∗ | ≤ k, thus i ≤ i∗.

Hence the radius of Mi is at most 2 `(ei) ≤ 2 `(ei∗) = 2OPT.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 26 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k B i ≤ i∗
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi B gives a 2-approximation

The radius of Mi is at most 2 `(ei).

Because Gi∗ has a dominating set of size k,
any maximal independent set in G2

i∗ has size at most k.

So certainly |Mi∗ | ≤ k, thus i ≤ i∗.

Hence the radius of Mi is at most 2 `(ei) ≤ 2 `(ei∗) = 2OPT.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 26 / 58

Bottleneck problems: metric k-center

Algorithm GHS (k ,G , `) B Gonzalez ’85, Hochbaum and Shmoys ’85
1 M0 := V (G) i := 0
2 while |Mi | > k B i ≤ i∗
3 i := i + 1
4 Let Mi be a maximal independent set on G2

i
5 return Mi B gives a 2-approximation

Exercise 3:
Is there an α-approximation with α < 2 for the metric k-center?

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 27 / 58

Clustering problems

Classical k-median
Given:

a positive integer k,
a set V of elements, and
a function d : V × V → Q+,

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 28 / 58

Clustering problems

Classical k-median
Given:

a positive integer k,
a set V of elements, and
a function d : V × V → Q+,

find a set S ⊆ V with |S| = k that . . .

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 28 / 58

Clustering problems

Classical k-median
Given:

a positive integer k,
a set V of elements, and
a function d : V × V → Q+,

find a set S ⊆ V with |S| = k that minimizes
∑

u∈V minv∈S d(u, v).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 28 / 58

Clustering problems

Classical k-median
Given:

a positive integer k,
a set V of elements, and
a function d : V × V → Q+,

find a set S ⊆ V with |S| = k that minimizes
∑

u∈V minv∈S d(u, v).

There is no α-approximation
for constant α > 1 unless P = NP.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 28 / 58

Local search: metric k-median

k-median instance: positive integer k, set V , and distance function d .

Let S be a subset of V of size k. Let u ∈ S and v 6∈ S.

Pair (u, v) is an improving swap for S if S ′ = S − u + v has better cost:∑
u∈V

min
v∈S

d(u, v) >
∑
u∈V

min
v∈S′

d(u, v).

Algorithm AGKMMP (k ,V , d) B Arya et al. ’01
1 let S be an arbitrary set of k elements of V
2 while there is an improving swap (u, v) for S
3 S := S − u + v
4 return S

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 29 / 58

Local search: metric k-median

k-median instance: positive integer k, set V , and distance function d .

Let S be a subset of V of size k. Let u ∈ S and v 6∈ S.

Pair (u, v) is an improving swap for S if S ′ = S − u + v has better cost:∑
u∈V

min
v∈S

d(u, v) >
∑
u∈V

min
v∈S′

d(u, v).

Algorithm AGKMMP (k ,V , d) B Arya et al. ’01
1 let S be an arbitrary set of k elements of V
2 while there is an improving swap (u, v) for S
3 S := S − u + v
4 return S

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 29 / 58

Local search: metric k-median

k-median instance: positive integer k, set V , and distance function d .

Let S be a subset of V of size k. Let u ∈ S and v 6∈ S.

Pair (u, v) is an improving swap for S if S ′ = S − u + v has better cost:∑
u∈V

min
v∈S

d(u, v) >
∑
u∈V

min
v∈S′

d(u, v).

Algorithm AGKMMP (k ,V , d) B Arya et al. ’01
1 let S be an arbitrary set of k elements of V
2 while there is an improving swap (u, v) for S
3 S := S − u + v
4 return S

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 29 / 58

Local search: metric k-median

k-median instance: positive integer k, set V , and distance function d .

Let S be a subset of V of size k. Let u ∈ S and v 6∈ S.

Pair (u, v) is an improving swap for S if S ′ = S − u + v has better cost:∑
u∈V

min
v∈S

d(u, v) >
∑
u∈V

min
v∈S′

d(u, v).

Algorithm AGKMMP (k ,V , d) B Arya et al. ’01
1 let S be an arbitrary set of k elements of V
2 while there is an improving swap (u, v) for S
3 S := S − u + v
4 return S

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 29 / 58

Local search: metric k-median

Algorithm AGKMMP (k ,V , d) B Arya et al. ’01
1 let S be an arbitrary set of k elements of V
2 while there is an improving swap (u, v) for S
3 S := S − u + v
4 return S

k = 2

This is a 5-approximation!

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 30 / 58

Local search: metric k-median

Algorithm AGKMMP (k ,V , d) B Arya et al. ’01
1 let S be an arbitrary set of k elements of V
2 while there is an improving swap (u, v) for S
3 S := S − u + v
4 return S

k = 2

This is a 5-approximation!

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 30 / 58

Local search: metric k-median

Algorithm AGKMMP (k ,V , d) B Arya et al. ’01
1 let S be an arbitrary set of k elements of V
2 while there is an improving swap (u, v) for S
3 S := S − u + v
4 return S

k = 2

This is a 5-approximation!

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 30 / 58

Local search: metric k-median

Algorithm AGKMMP (k ,V , d) B Arya et al. ’01
1 let S be an arbitrary set of k elements of V
2 while there is an improving swap (u, v) for S
3 S := S − u + v
4 return S

k = 2

This is a 5-approximation!

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 30 / 58

Local search: metric k-median

Algorithm AGKMMP (k ,V , d) B Arya et al. ’01
1 let S be an arbitrary set of k elements of V
2 while there is an improving swap (u, v) for S
3 S := S − u + v
4 return S

k = 2

This is a 5-approximation!

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 30 / 58

Local search: metric k-median

Algorithm AGKMMP (k ,V , d) B Arya et al. ’01
1 let S be an arbitrary set of k elements of V
2 while there is an improving swap (u, v) for S
3 S := S − u + v
4 return S

k = 2

This is a 5-approximation!

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 30 / 58

Sketch of the approximation analysis

Let S∗ be an optimal solution and N∗(o) be the clients of o in S∗

Let S be the output of the algorithm and N(s) be the clients of s in S.

s ∈ S captures o ∈ S∗ if |N∗(o) ∩ N(s)| > |N∗(o)|/2.

Each o ∈ S∗ is captured by at most one element from S.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 31 / 58

Sketch of the approximation analysis

Let S∗ be an optimal solution and N∗(o) be the clients of o in S∗

Let S be the output of the algorithm and N(s) be the clients of s in S.

s ∈ S captures o ∈ S∗ if |N∗(o) ∩ N(s)| > |N∗(o)|/2.

Each o ∈ S∗ is captured by at most one element from S.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 31 / 58

Sketch of the approximation analysis

Let S∗ be an optimal solution and N∗(o) be the clients of o in S∗

Let S be the output of the algorithm and N(s) be the clients of s in S.

o

s

s ∈ S captures o ∈ S∗ if |N∗(o) ∩ N(s)| > |N∗(o)|/2.

Each o ∈ S∗ is captured by at most one element from S.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 31 / 58

Sketch of the approximation analysis

Let S∗ be an optimal solution and N∗(o) be the clients of o in S∗

Let S be the output of the algorithm and N(s) be the clients of s in S.

o

s

s ∈ S captures o ∈ S∗ if |N∗(o) ∩ N(s)| > |N∗(o)|/2.

Each o ∈ S∗ is captured by at most one element from S.
Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 31 / 58

Sketch of the approximation analysis

s ∈ S captures o ∈ S∗ if |N∗(o) ∩ N(s)| > |N∗(o)|/2.

Assume that each s ∈ S captures exactly one element o from S∗.

In this case, let us prove that cost(S) ≤ 3 cost(S∗).

Because (s, o) is not an improving swap, cost(S − s + o) ≥ cost(S).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 32 / 58

Sketch of the approximation analysis

s ∈ S captures o ∈ S∗ if |N∗(o) ∩ N(s)| > |N∗(o)|/2.

Assume that each s ∈ S captures exactly one element o from S∗.

In this case, let us prove that cost(S) ≤ 3 cost(S∗).

Because (s, o) is not an improving swap, cost(S − s + o) ≥ cost(S).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 32 / 58

Sketch of the approximation analysis

s ∈ S captures o ∈ S∗ if |N∗(o) ∩ N(s)| > |N∗(o)|/2.

Assume that each s ∈ S captures exactly one element o from S∗.

In this case, let us prove that cost(S) ≤ 3 cost(S∗).

Because (s, o) is not an improving swap, cost(S − s + o) ≥ cost(S).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 32 / 58

Sketch of the approximation analysis

o

s

cost(S − s + o) ≤ ???

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 33 / 58

Sketch of the approximation analysis

o

s

cost(S − s + o) ≤ ???

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 34 / 58

Sketch of the approximation analysis

o

s

cost(S − s + o) ≤ cost(S) + ???

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 35 / 58

Sketch of the approximation analysis

o

s

j

cost(S−s +o) ≤ cost(S) +
∑

j∈N∗(o)
(oj−sj) +

∑
j∈N(s)\N∗(o)

(oj + oπ(j) + sπ(j) − sj).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 36 / 58

Sketch of the approximation analysis

o

s

jj

j

cost(S−s +o) ≤ cost(S) +
∑

j∈N∗(o)
(oj−sj) +

∑
j∈N(s)\N∗(o)

(oj + oπ(j) + sπ(j) − sj).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 36 / 58

Sketch of the approximation analysis

o

s

jj

jj j

cost(S−s +o) ≤ cost(S) +
∑

j∈N∗(o)
(oj−sj) +

∑
j∈N(s)\N∗(o)

(oj + oπ(j) + sπ(j) − sj).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 36 / 58

Sketch of the approximation analysis

o

s

jj

jj jj j

cost(S−s +o) ≤ cost(S) +
∑

j∈N∗(o)
(oj−sj) +

∑
j∈N(s)\N∗(o)

(oj + oπ(j) + sπ(j) − sj).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 36 / 58

Sketch of the approximation analysis

o

s

jj

jj jj jj

j

cost(S−s +o) ≤ cost(S) +
∑

j∈N∗(o)
(oj−sj) +

∑
j∈N(s)\N∗(o)

(oj + oπ(j) + sπ(j) − sj).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 36 / 58

Sketch of the approximation analysis

o

s

jj

jj jj jj

j

o′
s ′

π(j)

cost(S−s +o) ≤ cost(S) +
∑

j∈N∗(o)
(oj−sj) +

∑
j∈N(s)\N∗(o)

(oj + oπ(j) + sπ(j) − sj).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 36 / 58

Sketch of the approximation analysis

j

o

s

o′
s ′

π(j)

cost(S− s + o) ≤ cost(S) +
∑

j∈N∗(o)
(oj − sj) +

∑
j∈N(s)\N∗(o)

(oj + oπ(j) + sπ(j)− sj).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 37 / 58

Sketch of the approximation analysis

j

o

s

o′
s ′

π(j)

cost(S − s + o) ≤ cost(S) +
∑

j∈N∗(o)
(oj − sj) +

∑
j∈N(s)

(oj + oπ(j) + sπ(j)− sj).

Permutation π is selected using that |N∗(o′) ∩ N(s ′)| > |N∗(o)|/2.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 38 / 58

Sketch of the approximation analysis

j

o

s

o′
s ′

π(j)

cost(S − s + o) ≤ cost(S) +
∑

j∈N∗(o)
(oj − sj) +

∑
j∈N(s)

(oj + oπ(j) + sπ(j)− sj).

Permutation π is selected using that |N∗(o′) ∩ N(s ′)| > |N∗(o)|/2.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 38 / 58

Sketch of the approximation analysis

o

s

cost(S − s + o) ≤ cost(S) +
∑

j∈N∗(o)
(oj − sj) +

∑
j∈N(s)

(oj + oπ(j) + sπ(j)− sj).

But cost(S − s + o) ≥ cost(S), so∑
j∈N∗(o)

(oj − sj) +
∑

j∈N(s)
(oj + oπ(j) + sπ(j) − sj) ≥ 0.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 39 / 58

Sketch of the approximation analysis

∑
j∈N∗(o)

(oj − sj) +
∑

j∈N(s)
(oj + oπ(j) + sπ(j) − sj) ≥ 0

Thus, summing over all s ∈ S and the corresponding o ∈ S∗, we get

(cost(S∗)− cost(S)) + (cost(S∗) + cost(S∗) + cost(S)− cost(S)) ≥ 0

Therefore cost(S) ≤ 3 cost(S∗).

Without the assumption that
each s ∈ S captures exactly one element o from S∗,
by a similar analysis, we can derive that cost(S) ≤ 5 cost(S∗).

Exercise 4:
Argue that each s ∈ S captures at most two elements from S∗ and
derive that

∑
j∈N∗(o)(oj − sj) + 2

∑
j∈N(s)(oj + oπ(j) + sπ(j) − sj) ≥ 0.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 40 / 58

Sketch of the approximation analysis

∑
j∈N∗(o)

(oj − sj) +
∑

j∈N(s)
(oj + oπ(j) + sπ(j) − sj) ≥ 0

Thus, summing over all s ∈ S and the corresponding o ∈ S∗, we get

(cost(S∗)− cost(S)) + (cost(S∗) + cost(S∗) + cost(S)− cost(S)) ≥ 0

Therefore cost(S) ≤ 3 cost(S∗).

Without the assumption that
each s ∈ S captures exactly one element o from S∗,
by a similar analysis, we can derive that cost(S) ≤ 5 cost(S∗).

Exercise 4:
Argue that each s ∈ S captures at most two elements from S∗ and
derive that

∑
j∈N∗(o)(oj − sj) + 2

∑
j∈N(s)(oj + oπ(j) + sπ(j) − sj) ≥ 0.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 40 / 58

Sketch of the approximation analysis

∑
j∈N∗(o)

(oj − sj) +
∑

j∈N(s)
(oj + oπ(j) + sπ(j) − sj) ≥ 0

Thus, summing over all s ∈ S and the corresponding o ∈ S∗, we get

(cost(S∗)− cost(S)) + (cost(S∗) + cost(S∗) + cost(S)− cost(S)) ≥ 0

Therefore cost(S) ≤ 3 cost(S∗).

Without the assumption that
each s ∈ S captures exactly one element o from S∗,
by a similar analysis, we can derive that cost(S) ≤ 5 cost(S∗).

Exercise 4:
Argue that each s ∈ S captures at most two elements from S∗ and
derive that

∑
j∈N∗(o)(oj − sj) + 2

∑
j∈N(s)(oj + oπ(j) + sπ(j) − sj) ≥ 0.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 40 / 58

Sketch of the approximation analysis

∑
j∈N∗(o)

(oj − sj) +
∑

j∈N(s)
(oj + oπ(j) + sπ(j) − sj) ≥ 0

Thus, summing over all s ∈ S and the corresponding o ∈ S∗, we get

(cost(S∗)− cost(S)) + (cost(S∗) + cost(S∗) + cost(S)− cost(S)) ≥ 0

Therefore cost(S) ≤ 3 cost(S∗).

Without the assumption that
each s ∈ S captures exactly one element o from S∗,
by a similar analysis, we can derive that cost(S) ≤ 5 cost(S∗).

Exercise 4:
Argue that each s ∈ S captures at most two elements from S∗ and
derive that

∑
j∈N∗(o)(oj − sj) + 2

∑
j∈N(s)(oj + oπ(j) + sπ(j) − sj) ≥ 0.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 40 / 58

Short break before Part 2

Exercise 1:
Sort the jobs in decreasing order of the processing time before running
Graham’s algorithm. Can you prove an approximation ratio better than 2
for this algorithm?

Exercise 2:
How does the inapproximability result for k-center apply to metric
instances?

Exercise 3:
Is there an α-approximation with α < 2 for the metric k-center?

Exercise 4:
Argue that each s ∈ S captures at most two elements from S∗ and
derive that

∑
j∈N∗(o)(oj − sj) + 2

∑
j∈N(s)(oj + oπ(j) + sπ(j) − sj) ≥ 0.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 41 / 58

Satisfiability

Boolean formulas

vi : boolean variable
v̄i : negation of the boolean variable vi

literal: a variable or its negation

clause: disjunction (OR) of literals, as for instance v1 ∨ v̄2 ∨ v3

(literals in the same clause correspond to distinct variables)

Boolean formula in conjunctive normal form (CNF):

φ = (v1 ∨ v̄2 ∨ v3)(v̄1 ∨ v̄3)(v2 ∨ v3 ∨ v̄4 ∨ v5)(v̄1 ∨ v4 ∨ v̄5)

assignment for φ: function that assigns True or False to each variable in φ

To decide whether there exists an assignment
that satisfies a CNF formula is NP-complete.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 42 / 58

Satisfiability

Boolean formulas

vi : boolean variable
v̄i : negation of the boolean variable vi

literal: a variable or its negation

clause: disjunction (OR) of literals, as for instance v1 ∨ v̄2 ∨ v3
(literals in the same clause correspond to distinct variables)

Boolean formula in conjunctive normal form (CNF):

φ = (v1 ∨ v̄2 ∨ v3)(v̄1 ∨ v̄3)(v2 ∨ v3 ∨ v̄4 ∨ v5)(v̄1 ∨ v4 ∨ v̄5)

assignment for φ: function that assigns True or False to each variable in φ

To decide whether there exists an assignment
that satisfies a CNF formula is NP-complete.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 42 / 58

Satisfiability

Boolean formulas

vi : boolean variable
v̄i : negation of the boolean variable vi

literal: a variable or its negation

clause: disjunction (OR) of literals, as for instance v1 ∨ v̄2 ∨ v3
(literals in the same clause correspond to distinct variables)

Boolean formula in conjunctive normal form (CNF):

φ = (v1 ∨ v̄2 ∨ v3)(v̄1 ∨ v̄3)(v2 ∨ v3 ∨ v̄4 ∨ v5)(v̄1 ∨ v4 ∨ v̄5)

assignment for φ: function that assigns True or False to each variable in φ

To decide whether there exists an assignment
that satisfies a CNF formula is NP-complete.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 42 / 58

Satisfiability

Boolean formulas

vi : boolean variable
v̄i : negation of the boolean variable vi

literal: a variable or its negation

clause: disjunction (OR) of literals, as for instance v1 ∨ v̄2 ∨ v3
(literals in the same clause correspond to distinct variables)

Boolean formula in conjunctive normal form (CNF):

φ = (v1 ∨ v̄2 ∨ v3)(v̄1 ∨ v̄3)(v2 ∨ v3 ∨ v̄4 ∨ v5)(v̄1 ∨ v4 ∨ v̄5)

assignment for φ: function that assigns True or False to each variable in φ

To decide whether there exists an assignment
that satisfies a CNF formula is NP-complete.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 42 / 58

MAX SAT

MAX SAT Problem
Given a CNF formula φ,
find an assignment for φ that maximizes the number of satisfied clauses.

Probabilistic algorithm:

For each i , with probability 1/2 each,
choose to set vi = True or to set vi = False

A k-clause is a clause with exactly k literals.

What is the probability that a k-clause C ends up satisfied?

Pr[C is satisfied] = 1− 1
2k

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 43 / 58

MAX SAT

MAX SAT Problem
Given a CNF formula φ,
find an assignment for φ that maximizes the number of satisfied clauses.

Probabilistic algorithm:

For each i , with probability 1/2 each,
choose to set vi = True or to set vi = False

A k-clause is a clause with exactly k literals.

What is the probability that a k-clause C ends up satisfied?

Pr[C is satisfied] = 1− 1
2k

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 43 / 58

MAX SAT

MAX SAT Problem
Given a CNF formula φ,
find an assignment for φ that maximizes the number of satisfied clauses.

Probabilistic algorithm:

For each i , with probability 1/2 each,
choose to set vi = True or to set vi = False

A k-clause is a clause with exactly k literals.

What is the probability that a k-clause C ends up satisfied?

Pr[C is satisfied] = 1− 1
2k

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 43 / 58

MAX SAT

MAX SAT Problem
Given a CNF formula φ,
find an assignment for φ that maximizes the number of satisfied clauses.

Probabilistic algorithm:

For each i , with probability 1/2 each,
choose to set vi = True or to set vi = False

A k-clause is a clause with exactly k literals.

What is the probability that a k-clause C ends up satisfied?

Pr[C is satisfied] = 1− 1
2k

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 43 / 58

Probabilistic 1
2-approximation for SAT

Algorithm Johnson (φ) B Johnson ’74
1 let V be the set of variables in φ
2 for each v ∈ V
3 xv := Rand(1/2)
4 return x B gives a (probabilistic) 0.5-approximation

Rand(p): returns 1 with probability p or 0 with probability 1− p.

As each clause in φ has at least one literal,
each clause is satistied with probability at least 1/2.

Let m be the number of clauses in φ.

Then clearly Exp[cost(x)] ≥ m/2 ≥ OPT(φ)/2.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 44 / 58

Probabilistic 1
2-approximation for SAT

Algorithm Johnson (φ) B Johnson ’74
1 let V be the set of variables in φ
2 for each v ∈ V
3 xv := Rand(1/2)
4 return x B gives a (probabilistic) 0.5-approximation

Rand(p): returns 1 with probability p or 0 with probability 1− p.

As each clause in φ has at least one literal,
each clause is satistied with probability at least 1/2.

Let m be the number of clauses in φ.

Then clearly Exp[cost(x)] ≥ m/2 ≥ OPT(φ)/2.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 44 / 58

Probabilistic 1
2-approximation for SAT

Algorithm Johnson (φ) B Johnson ’74
1 let V be the set of variables in φ
2 for each v ∈ V
3 xv := Rand(1/2)
4 return x B gives a (probabilistic) 0.5-approximation

Rand(p): returns 1 with probability p or 0 with probability 1− p.

As each clause in φ has at least one literal,
each clause is satistied with probability at least 1/2.

Let m be the number of clauses in φ.

Then clearly Exp[cost(x)] ≥ m/2 ≥ OPT(φ)/2.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 44 / 58

One more exercise

Proposed algorithm
1 let V be the set of variables in φ
2 s := Rand(1/2) B unique coin flip
3 for each v ∈ V
4 xv := s
5 return x

Rand(p): returns 1 with probability p and 0 with probability 1− p.

Exercise 5:
Prove that the proposed algorithm is an α-approximation for some α,
or argue that the algorithm is not an approximation algorithm.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 45 / 58

Integer programming formulations

For a CNF formula φ,
V is its set of variables.

For a clause C of φ,
C0 := {vi : v̄i ∈ C} and C1 := {vi : vi ∈ C}.

C0 are the negative variables in C and C1 are the positive variables in C .

Consider the following integer linear program (IP) built from φ:

maximize
∑

C∈φ zC
subject to∑

v∈C0(1− xv) +
∑

v∈C1 xv ≥ zC for every C ∈ φ
zC ∈ {0, 1} for every C ∈ φ
xv ∈ {0, 1} for every v ∈ V

Solving this IP is equivalent to finding OPT(φ).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 46 / 58

Integer programming formulations

For a CNF formula φ,
V is its set of variables.

For a clause C of φ,
C0 := {vi : v̄i ∈ C} and C1 := {vi : vi ∈ C}.

C0 are the negative variables in C and C1 are the positive variables in C .

Consider the following integer linear program (IP) built from φ:

maximize
∑

C∈φ zC
subject to∑

v∈C0(1− xv) +
∑

v∈C1 xv ≥ zC for every C ∈ φ
zC ∈ {0, 1} for every C ∈ φ
xv ∈ {0, 1} for every v ∈ V

Solving this IP is equivalent to finding OPT(φ).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 46 / 58

Integer programming formulations

For a CNF formula φ,
V is its set of variables.

For a clause C of φ,
C0 := {vi : v̄i ∈ C} and C1 := {vi : vi ∈ C}.

C0 are the negative variables in C and C1 are the positive variables in C .

Consider the following integer linear program (IP) built from φ:

maximize
∑

C∈φ zC
subject to∑

v∈C0(1− xv) +
∑

v∈C1 xv ≥ zC for every C ∈ φ
zC ∈ {0, 1} for every C ∈ φ
xv ∈ {0, 1} for every v ∈ V

Solving this IP is equivalent to finding OPT(φ).

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 46 / 58

Linear programming and rounding

The linear relaxation of the IP built from φ is:

maximize
∑

C∈φ zC
subject to∑

v∈C0(1− xv) +
∑

v∈C1 xv ≥ zC for every C ∈ φ
0 ≤ zC ≤ 1 for every C ∈ φ
0 ≤ xv ≤ 1 for every v ∈ V

There are polynomial-time algorithms that solve linear programs.

If z∗ is the optimum value of this linear program (LP), then OPT(φ) ≤ z∗.

Idea
Use the value of xv ∈ [0, 1] to decide how to set v to True or False.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 47 / 58

Linear programming and rounding

The linear relaxation of the IP built from φ is:

maximize
∑

C∈φ zC
subject to∑

v∈C0(1− xv) +
∑

v∈C1 xv ≥ zC for every C ∈ φ
0 ≤ zC ≤ 1 for every C ∈ φ
0 ≤ xv ≤ 1 for every v ∈ V

There are polynomial-time algorithms that solve linear programs.

If z∗ is the optimum value of this linear program (LP), then OPT(φ) ≤ z∗.

Idea
Use the value of xv ∈ [0, 1] to decide how to set v to True or False.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 47 / 58

Linear programming and rounding

The linear relaxation of the IP built from φ is:

maximize
∑

C∈φ zC
subject to∑

v∈C0(1− xv) +
∑

v∈C1 xv ≥ zC for every C ∈ φ
0 ≤ zC ≤ 1 for every C ∈ φ
0 ≤ xv ≤ 1 for every v ∈ V

There are polynomial-time algorithms that solve linear programs.

If z∗ is the optimum value of this linear program (LP), then OPT(φ) ≤ z∗.

Idea
Use the value of xv ∈ [0, 1] to decide how to set v to True or False.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 47 / 58

Linear programming and rounding

The linear relaxation of the IP built from φ is:

maximize
∑

C∈φ zC
subject to∑

v∈C0(1− xv) +
∑

v∈C1 xv ≥ zC for every C ∈ φ
0 ≤ zC ≤ 1 for every C ∈ φ
0 ≤ xv ≤ 1 for every v ∈ V

There are polynomial-time algorithms that solve linear programs.

If z∗ is the optimum value of this linear program (LP), then OPT(φ) ≤ z∗.

Idea
Use the value of xv ∈ [0, 1] to decide how to set v to True or False.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 47 / 58

Probabilistic rounding

maximize
∑

C∈φ zC
subject to∑

v∈C0(1− xv) +
∑

v∈C1 xv ≥ zC for every C ∈ φ
0 ≤ zC ≤ 1 for every C ∈ φ
0 ≤ xv ≤ 1 for every v ∈ V

Algorithm GW (φ) B Goemans and Williamson ’94
1 solve the LP above obtaining ẑ and x̂
2 for each v ∈ V
3 ẋv := Rand(x̂v)
4 return ẋ B gives a (probabilistic) 0.63-approximation

Indeed, ẋ satisfies at least 0.63
∑

C∈φ ẑC ≥ 0.63OPT(φ) clauses.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 48 / 58

Probabilistic rounding

maximize
∑

C∈φ zC
subject to∑

v∈C0(1− xv) +
∑

v∈C1 xv ≥ zC for every C ∈ φ
0 ≤ zC ≤ 1 for every C ∈ φ
0 ≤ xv ≤ 1 for every v ∈ V

Algorithm GW (φ) B Goemans and Williamson ’94
1 solve the LP above obtaining ẑ and x̂
2 for each v ∈ V
3 ẋv := Rand(x̂v)
4 return ẋ B gives a (probabilistic) 0.63-approximation

Indeed, ẋ satisfies at least 0.63
∑

C∈φ ẑC ≥ 0.63OPT(φ) clauses.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 48 / 58

Analysis
For each clause C , let t be the number of literals in C .

Consider the binary random variable
ZC that is 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] = Pr[ZC = 1] = 1−
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v)

For non-negative numbers, geometric is smaller than aritmetic mean:

(
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v))1/t ≤
∑

v∈C0 x̂v +
∑

v∈C1(1− x̂v)
t

=
(|C0| −

∑
v∈C0(1− x̂v)) + (|C1| −

∑
v∈C1 x̂v)

t

=
t −

∑
v∈C0(1− x̂v)−

∑
v∈C1 x̂v

t

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 49 / 58

Analysis
For each clause C , let t be the number of literals in C .

Consider the binary random variable
ZC that is 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] = Pr[ZC = 1] = 1−
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v)

For non-negative numbers, geometric is smaller than aritmetic mean:

(
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v))1/t ≤
∑

v∈C0 x̂v +
∑

v∈C1(1− x̂v)
t

=
(|C0| −

∑
v∈C0(1− x̂v)) + (|C1| −

∑
v∈C1 x̂v)

t

=
t −

∑
v∈C0(1− x̂v)−

∑
v∈C1 x̂v

t

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 49 / 58

Analysis
For each clause C , let t be the number of literals in C .

Consider the binary random variable
ZC that is 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] = Pr[ZC = 1] = 1−
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v)

For non-negative numbers, geometric is smaller than aritmetic mean:

(
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v))1/t ≤
∑

v∈C0 x̂v +
∑

v∈C1(1− x̂v)
t

=
(|C0| −

∑
v∈C0(1− x̂v)) + (|C1| −

∑
v∈C1 x̂v)

t

=
t −

∑
v∈C0(1− x̂v)−

∑
v∈C1 x̂v

t

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 49 / 58

Analysis
For each clause C , let t be the number of literals in C .

Consider the binary random variable
ZC that is 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] = Pr[ZC = 1] = 1−
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v)

For non-negative numbers, geometric is smaller than aritmetic mean:

(
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v))1/t ≤
∑

v∈C0 x̂v +
∑

v∈C1(1− x̂v)
t

=
(|C0| −

∑
v∈C0(1− x̂v)) + (|C1| −

∑
v∈C1 x̂v)

t

=
t −

∑
v∈C0(1− x̂v)−

∑
v∈C1 x̂v

t

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 49 / 58

Analysis
For each clause C , let t be the number of literals in C .

Consider the binary random variable
ZC that is 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] = Pr[ZC = 1] = 1−
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v)

For non-negative numbers, geometric is smaller than aritmetic mean:

(
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v))1/t ≤
∑

v∈C0 x̂v +
∑

v∈C1(1− x̂v)
t

=
(|C0| −

∑
v∈C0(1− x̂v)) + (|C1| −

∑
v∈C1 x̂v)

t

=
t −

∑
v∈C0(1− x̂v)−

∑
v∈C1 x̂v

t

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 49 / 58

Analysis
For each clause C , let t be the number of literals in C .

Consider the binary random variable
ZC that is 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] = Pr[ZC = 1] = 1−
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v)

For non-negative numbers, geometric is smaller than aritmetic mean:

(
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v))1/t ≤
∑

v∈C0 x̂v +
∑

v∈C1(1− x̂v)
t

=
(|C0| −

∑
v∈C0(1− x̂v)) + (|C1| −

∑
v∈C1 x̂v)

t

=
t −

∑
v∈C0(1− x̂v)−

∑
v∈C1 x̂v

t

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 49 / 58

Analysis
For each clause C , let t be the number of literals in C .

Consider the binary random variable
ZC that is 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] = Pr[ZC = 1] = 1−
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v)

For non-negative numbers, geometric is smaller than aritmetic mean:

(
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v))1/t ≤
∑

v∈C0 x̂v +
∑

v∈C1(1− x̂v)
t

=
t −

∑
v∈C0(1− x̂v)−

∑
v∈C1 x̂v

t

≤ t − ẑC
t .

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 50 / 58

Analysis

For each clause C , let t be the number of literals in C .

Consider the binary random variable
ZC that is 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] = Pr[ZC = 1] = 1−
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v)

For non-negative numbers,

(
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v))1/t ≤ t − ẑC
t .

Hence
Exp[ZC] ≥ 1− (t − ẑC

t)t .

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 51 / 58

Analysis

For each clause C with t literals,
let ZC be 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] ≥ 1− (t − ẑC
t)t

= 1− (1− ẑC
t)t

≥ (1− (1− 1
t)t)ẑC

because f (z) = 1− (1− z
t)t is concave in the interval [0, 1],

and f (0) = 0, so f (z) ≥ z f (1), which implies the last inequality.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 52 / 58

Analysis

For each clause C with t literals,
let ZC be 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] ≥ 1− (t − ẑC
t)t

= 1− (1− ẑC
t)t

≥ (1− (1− 1
t)t)ẑC

because f (z) = 1− (1− z
t)t is concave in the interval [0, 1],

and f (0) = 0, so f (z) ≥ z f (1), which implies the last inequality.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 52 / 58

Analysis

For each clause C with t literals,
let ZC be 1 if C is satisfied by ẋ and 0 otherwise.

Exp[ZC] ≥ 1− (t − ẑC
t)t

= 1− (1− ẑC
t)t

≥ (1− (1− 1
t)t)ẑC

> (1− 1
e)ẑC

> 0.63 ẑC

because (1− 1
t)t < 1

e for every t ≥ 1.

Euler’s number e = 2.71828, the base of the natural logarithm.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 53 / 58

Analysis

For each clause C with t literals,
let ZC be 1 if C is satisfied by ẋ and 0 otherwise.

Note that
∑

C∈φ ZC is the number of clauses satisfied
by the assignment ẋ produced by the GW algorithm.

As, for every C ∈ φ,

Exp[ZC] > 0.63 ẑC ,

then we deduce that

Exp[
∑
C∈φ

ZC] > 0.63
∑
C∈φ

ẑC ≥ 0.63OPT(φ).

The GW algorithm is a 0.63-approximation for MAXSAT.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 54 / 58

Analysis

For each clause C with t literals,
let ZC be 1 if C is satisfied by ẋ and 0 otherwise.

Note that
∑

C∈φ ZC is the number of clauses satisfied
by the assignment ẋ produced by the GW algorithm.

As, for every C ∈ φ,

Exp[ZC] > 0.63 ẑC ,

then we deduce that

Exp[
∑
C∈φ

ZC] > 0.63
∑
C∈φ

ẑC ≥ 0.63OPT(φ).

The GW algorithm is a 0.63-approximation for MAXSAT.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 54 / 58

Analysis

For each clause C with t literals,
let ZC be 1 if C is satisfied by ẋ and 0 otherwise.

Note that
∑

C∈φ ZC is the number of clauses satisfied
by the assignment ẋ produced by the GW algorithm.

As, for every C ∈ φ,

Exp[ZC] > 0.63 ẑC ,

then we deduce that

Exp[
∑
C∈φ

ZC] > 0.63
∑
C∈φ

ẑC ≥ 0.63OPT(φ).

The GW algorithm is a 0.63-approximation for MAXSAT.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 54 / 58

Joining ideas

If all clauses have k literals,
then Johnson’s algorithm is a (1− 1

2k)-approximation,
which improves as k grows.

If all clauses have k literals,
then GW algorithm is a (1− (1− 1

k)k)-approximation,
which gets worse as k grows.

So one of the algorithms works better on formulas whose clauses are long,
and the other on formulas whose clauses are short.

Idea
Run both algorithms and output the best solution.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 55 / 58

Joining ideas

If all clauses have k literals,
then Johnson’s algorithm is a (1− 1

2k)-approximation,
which improves as k grows.

If all clauses have k literals,
then GW algorithm is a (1− (1− 1

k)k)-approximation,
which gets worse as k grows.

So one of the algorithms works better on formulas whose clauses are long,
and the other on formulas whose clauses are short.

Idea
Run both algorithms and output the best solution.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 55 / 58

Joining ideas

If all clauses have k literals,
then Johnson’s algorithm is a (1− 1

2k)-approximation,
which improves as k grows.

If all clauses have k literals,
then GW algorithm is a (1− (1− 1

k)k)-approximation,
which gets worse as k grows.

So one of the algorithms works better on formulas whose clauses are long,
and the other on formulas whose clauses are short.

Idea
Run both algorithms and output the best solution.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 55 / 58

Joining ideas

Algorithm Combined (φ) B Goemans and Williamson ’94
1 xJ := Johnson(φ)
2 xGW := GW(φ)
3 let sJ be the number of clauses of φ satisfied by xJ
4 let sGW be the number of clauses of φ satisfied by xGW
5 if sJ ≥ sGW then return xJ
6 else return xGW B gives a 0.75-approximation

XJ : number of clauses satisfied by Johnson’s algorithm.

XGW : number of clauses satisfied by GW algorithm.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 56 / 58

Joining ideas

Algorithm Combined (φ) B Goemans and Williamson ’94
1 xJ := Johnson(φ)
2 xGW := GW(φ)
3 let sJ be the number of clauses of φ satisfied by xJ
4 let sGW be the number of clauses of φ satisfied by xGW
5 if sJ ≥ sGW then return xJ
6 else return xGW B gives a 0.75-approximation

XJ : number of clauses satisfied by Johnson’s algorithm.

XGW : number of clauses satisfied by GW algorithm.

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 56 / 58

Joining ideas
XJ : number of clauses satisfied by Johnson’s algorithm.

XGW : number of clauses satisfied by GW algorithm.

Ck : clauses in φ with exactly k literals

Exp[max{XJ ,XGW }] ≥ Exp[XJ + XGW
2]

≥ 1
2

∑
k

∑
C∈Ck

((1− 1
2k) + (1− (1− 1

k)k)ẑC)

≥ 1
2

∑
k

∑
C∈Ck

(1− 1
2k + 1− (1− 1

k)k)ẑC

≥ 1
2

∑
k

∑
C∈Ck

3
2 ẑC

= 3
4 OPT(φ)

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 57 / 58

Joining ideas
XJ : number of clauses satisfied by Johnson’s algorithm.

XGW : number of clauses satisfied by GW algorithm.

Ck : clauses in φ with exactly k literals

Exp[max{XJ ,XGW }] ≥ Exp[XJ + XGW
2]

≥ 1
2

∑
k

∑
C∈Ck

((1− 1
2k) + (1− (1− 1

k)k)ẑC)

≥ 1
2

∑
k

∑
C∈Ck

(1− 1
2k + 1− (1− 1

k)k)ẑC

≥ 1
2

∑
k

∑
C∈Ck

3
2 ẑC

= 3
4 OPT(φ)

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 57 / 58

Joining ideas
XJ : number of clauses satisfied by Johnson’s algorithm.

XGW : number of clauses satisfied by GW algorithm.

Ck : clauses in φ with exactly k literals

Exp[max{XJ ,XGW }] ≥ Exp[XJ + XGW
2]

≥ 1
2

∑
k

∑
C∈Ck

((1− 1
2k) + (1− (1− 1

k)k)ẑC)

≥ 1
2

∑
k

∑
C∈Ck

(1− 1
2k + 1− (1− 1

k)k)ẑC

≥ 1
2

∑
k

∑
C∈Ck

3
2 ẑC

= 3
4 OPT(φ)

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 57 / 58

Joining ideas
XJ : number of clauses satisfied by Johnson’s algorithm.

XGW : number of clauses satisfied by GW algorithm.

Ck : clauses in φ with exactly k literals

Exp[max{XJ ,XGW }] ≥ Exp[XJ + XGW
2]

≥ 1
2

∑
k

∑
C∈Ck

((1− 1
2k) + (1− (1− 1

k)k)ẑC)

≥ 1
2

∑
k

∑
C∈Ck

(1− 1
2k + 1− (1− 1

k)k)ẑC

≥ 1
2

∑
k

∑
C∈Ck

3
2 ẑC

= 3
4 OPT(φ)

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 57 / 58

Conclusions

If you like algorithms and
the use of smart ideas to design beautiful and efficient algorithms,
join the force to study approximation algorithms!

Two books on the subject
Approximation Algorithms, by Vazirani
The Design of Approximation Algorithms, by Williamson and Shmoys

THANK YOU!!!

Cristina G. Fernandes Approximation Algorithms Nov 7th, 2022 58 / 58

