
A Learning method to Estimate Multi-Compartmental T2 Distributions with low Data Requirements 

Daniel Vallejo-Aldana , Arturo Gonzalez-Vega , Victor H Hernandez , Valeria Piazza , Milvia Alata , Jonathan Rafael-Patiño , 
Thomas Yu , Luis Concha , and Alonso Ramirez-Manzanares 

Mathematics Department, Universidad de Guanajuato, Guanajuato, Mexico, Department of Chemical, Electronic and Biomedical 
Engineering, Division of Sciences and Engineering, University of Guanajuato, Leon, Mexico, 

Center of Research in Optics, Leon, Mexico, Signal Processing Lab 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, 
Switzerland, Radiology Department, Centre Hospitalier Universitaire Vaudois and University of 

Lausanne, Lausanne, Switzerland, Medical Image Analysis Laboratory, Center for Biomedical Imaging (CIBM), University of 
Lausanne, Lausanne, Switzerland, Institute of Neurobiology, Universidad Nacional Autonoma de 

Mexico, Juriquilla, Mexico, Computer Science, Centro de Investigación en Matemáticas A.C., Guanajuato, Mexico 

Synopsis 

The estimation of intravoxel distributions of T2 values based on multi-echo MR data is a challenging task. 
Interestingly, the information above is quite useful for detecting damage in brain tissue, i.e. for estimating 
myelin-water-fraction changes associated with the demyelination process. Currently available methods 
typically require a long train of echoes, which are not always feasible to acquire. In this work, we tackle 
the problem using state-of-the-art neural network architectures based on attention mechanisms such as 
Recurrent Neural Networks (RNN) with attention and the newly proposed Transformer architecture, 
widely used in Natural Language Processing Tasks and Computer Vision. We test our model on limited 
data (5 echoes and 4 TR). The methodology identifies myelin abnormalities in a rodent model of a 
neurological disorder with demyelination. 

 

Introduction 

The estimation of multi-compartmental T2 distributions P(T2) from multi-echo MR data allows the 
determination of myelin water fraction and therefore the identification of demyelination. The 
performance of classic inversion approaches has been investigated in recent studies, as well as 
approaches based on supervised learning techniques. Those techniques require a long train of echoes (e.g 
60 measurements are reported in (Yu. Et. Al 2020)). This proposal uses state-of-the-art Artificial Neural 
Networks (ANN) and T2 decay synthetic signal generators to investigate the feasibility of enabling a low-
requirement-clinically-feasible acquisition setting for this problem. We use in-vivo data from rats with a 
genetically defined neurological disorder called TAIEP characterized by mutant tubulin genes, conditioning 
de- and hypo-myelination of the CNS, and atrophy of basal ganglia and cerebellum. 

Methods 

Rats (3 Control and 3 TAIEP, all 2 months of age) were scanned on a 7T Bruker 70/16 US scanner, selecting 
a single coronal slice showing the corpus callosum with a plane resolution of 0.13 x 0.14 mm² and slice 
thickness of 1mm. Five echoes were acquired (TE={7,21,35,49,63} ms) for each 4 different repetition times 
TR={800,1500,3000,5000} ms. The white matter analysis was carried out on the corpus callosum of the 
rats.  

The first step is to create a training database of MR signals from multi-echo T2 based on the acquisition 
protocol. We use the EPG formalism such that the MR signal is defined as 



 

T1 value was set to 2000 milliseconds (about 2 seconds). The refocusing angles α are generated with a 
uniform distribution from 90 to 180 degrees. In synthetic signals, we set M0    = 1   and the real signals are 
normalized to their maximum value to mitigate the scaling effect. P(T2) is parametrized from 1 to 120 
milliseconds to cover for T2 values associated with myelin and intra/extracellular water spaces at 7T. We 
generate the T2 distributions using 20000 equally spaced points in the interval [1,120] ms. We then down 
sample the generated signals to a distribution of 60 bins. The down-sampled distribution is used as the 
target distribution intended to be predicted by the network. We added Rician noise with SNR=40 to all 
the synthetic signals (the SNR was estimated on homogeneous ROIs in the ex vivo rodent data). We 
created 10000 synthetic signals to train the learning model by randomly sampling the uniform 
distributions for the parameters above. 

 

 

For the inference machine, we propose a novel Deep Learning architecture based on attention 
mechanisms. The architecture corresponds to a Transformer (Vaswani 2017) based architecture, using an 
initial layer to convert a signal into vectors and then using the Transformer encoder to capture relevant 
information among the distinct parts of the signal. The resulting vectors of the encoding are then joined 
using the scaled dot product (Badhan au), and the resulting vector is then fed into a dense layer with a 
SoftMax activation function at the end to obtain the desired distribution. The proposed architecture is 
shown in Figure 1. 

 



 

 

The loss function is the convex combination of the Wasserstein Loss function with the Mean Squared error 
function (0.55 and 0.45 are the corresponding weights of the function). The model was trained for 200 
epochs with a batch size of 200. 

Experiments and results 

The proposed model presented high efficiency in the synthetic data presenting a small value of the loss 
function equal to 6.2. The learning method was also tested with human data just for comparative 
purposes. Our model outperformed previous supervised learning methods in both human and rat data. 
We then tested out the model to estimate the Myelin-Water-Fraction (MWF) of each voxel in the rat 
dataset.  

 

As we see in Figures 3 and 4 the model was able to capture the demyelination process among the corpus 
callosum 



 

 

It is worth mentioning that the model was also able to capture the inflammatory process of the TAIEP rats 
as shown in figure 5. 

  

 

 

Conclusions 

Our experiments indicate that the use of state-of-the-art supervised learning methods can reduce the 
number of images required to estimate multi-compartment T2 distributions. The natural extension of this 
work is to identify the minimum amount of data required to ensure the robustness of the estimation.  
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